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Abstract

In this paper, we develop binary patent classification algorithms for ambiguous concepts and small sample sizes. These
are particularly useful for economic questions, which often require binary classification for implementing ambiguous
and subjective concepts, where human classification is time-consuming, so that sample sizes are small. This covers
examples such as whether workers are susceptible to automation or not, or whether a device is an automat or not. We
compare the performance of naive Bayes, support vector machine, random forest and k-nearest neighbor classifiers
with a the spaCy convolutional neural network (CNN) model, as well as spaCy CNN model pre-trained with patent
data. The results show overall highest accuracy for the CNN models, with a significantly improved performance
through pre-training. Our analysis suggests that the spaCy pre-trained CNN model provides a highly accurate NLP
model, feasible for implementation without extensive computation capacity required. Pre-training was particularly
beneficial for small sample sizes. Already 100 labeled patents lead to an accuracy of 77.2%. The low sample size
required, may encourage researchers in various fields to use manually labeled patent data, for evaluating their specific
question.

Keywords: patent classification, small sample size, convolutional neural network, language model pre-training, fast
pre-training

1. Introduction

New technologies play a key role for economic de-
velopment and wealth [1]. This covers a large and cur-
rently very active debate on the effects of automation
technologies on the labor market [2, 3]. The economic5

debate often relies on binary classifications to analyze
the effects of new technologies on the economy. For ex-
ample, economists study whether technological change
refers to automation or not (e.g. [4]), whether workers
are susceptible or non-susceptible to automation (e.g.10

[5, 6]), how innovation vs. imitation affects the econ-
omy (e.g. [7]), or the role of process vs. product inno-
vations for firms (e.g. [8]). Patent texts are well rec-
ognized indicators to describe the technological state of
the art. As such, patents contain relevant information15

to measure the mentioned concepts, e.g., by classify-
ing patents that refer to automats vs. non-automats [4].
This is often complex due to the ambiguity of the con-
cepts and the similarity of patents that refer to distinct
categories. Being able to assign patents to unique cate-20

gories allows linking them to other economic data. Until
now there only exist few and very broad concordances
that allow assigning patents either to technologies [9]
or to industries [10]. But these classifications are rather
broad.25

In this paper, we compare binary patent classifiers,
which may be used for analyzing technological change.
The main challenge not only lies in the complexity and
ambiguity of the concepts, but also in the sample size.
Sample sizes are often small, because human coders of-30

ten require significant time for classifying such cases.
These algorithms may be applied to other cases with
complex and ambiguous binary classes and few train-
ing data.

The rest of this paper is organized as follows: Sec-35

tion 2 provides a description of the underlying patent
data and Section 3 our machine learning algorithms. We
present and discuss our results in Sections 4. Section 5
concludes.
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2. Patent Data40

We aim at developing a classifier which is able to han-
dle cases with high ambiguity / large overlap. Addition-
ally, it should provide sufficient precision even with low
numbers of examples, as hand-classification is costly
when human coders have to read large parts of a patent45

to classify it. In order to develop algorithms which are
suited for such cases, we focus on data which contains
a binary outcome variable with ambiguous classes. In
particular, we rely on patent data, which is particularly
suited to study technological change. Moreover, we50

focus on two selected cooperative patent classification
(CPC) classes as our outcome variable to analyze a bi-
nary outcome. We focus on two CPC classes which are
potentially hard to differentiate for an algorithm in or-
der to train algorithms which are suited for ambiguous55

cases.
We motivate the choice of our patent sample by the

recent interest in robot technologies and the widespread
interest this technology field receives in current public
and economic debate (e.g., [11, 12, 13]). The United60

States patent classification (USPC) class 901 - robot -
has been mapped to the CPC with the most recent up-
date being from 20121. Most statistically relevant CPC
classes related to the USPC class 901 are G 05D, A 61B,
G 05B, B 25J, B 23K, B 06B, and G 01N.65

Most similar from a technological perspective are
CPC classes G 05B and G 05D.2 We thus restrict our
sample to the two sub-classes G 05D and G 05B and
use these two classes as a natural delineation to train bi-
nary classifiers. G 05D refers to systems for controlling70

or regulating non-electric variables, e.g., for welding,
pressure control, and so on. G 05B relates to control
and regulating systems which are “clearly more gener-
ally applicable”. The fact that G 05B refers to systems
which are more generally applicable, whereas G 05D75

refers to those that control or regulate only non-electric
variables, creates a certain ambiguity. Such an abiguity
is often present in the economic examples noted above:
Without a sufficient training it is often hard to assess for
a human, whether a patent is sufficiently generally ap-80

plicable to be classified as G 05B instead of G 05D. This
challenge is similar to the economic samples described
in the introduction, such as [4] who define an automat as
a device that carries out a process independently. Their
classification task (i.e., automats vs. non-automats) in-85

volves ambiguity, as devices typically require at least

1USPC has been deprecated in favor of CPC.
2compare https://www.uspto.gov/web/patents/classification/

cpc/pdf/us901tocpc.pdf.

some kind of human involvement, so that the interpre-
tation of independence remains a subjective assessment
of the human coders.

Another objective of the algorithm is to achieve high90

accuracy with low sample data, as hand-classification is
costly when human coders have to read large parts of a
patent to classify a patent. [4], for example, build their
analysis of patents describing “automats” on 560 hand
classified patents. We will compare our algorithms for95

different sample sizes, to evaluate requirements on sam-
ple sizes for potential annotation tasks. We start with the
smallest sample size of 100 patents only, which may be
mainly relevant for early validation of the feasibility of
an idea, and as an input for active learning, which is an100

early training of the model to select further patents for
more efficient classification. Next, we include datasets
with 250 and 500 patents. We expect 500 patents to be
a potential minimum sample size for analysis, e.g., sim-
ilar to [4]. Finally we build larger datasets of 1,500 and105

5,000 patents, to evaluate the benefit of higher invest-
ment of resources for annotation.

We draw our sample data from the USPTO-2m patent
abstract dataset [14], which is commonly used for patent
classification benchmarking. For each dataset, we draw110

50% each G 05D and G 05B examples, whereas patents
with both labels are considered as G 05D. For evalua-
tion, we use 250 randomly drawn patents of each cate-
gory.

3. Patent Classification Algorithms115

In our analysis, we compare different approaches
for patent classification. [4] use a multinominal naive
Bayes (MNB) algorithm to identify patents describing
an “automat.” Based on 560 manual annotations, they
achieve a correct prediction of 80% of patents. One120

valuable feature of MNB is the ability to interpret re-
sults. [4], for example, extract tokens typical for “au-
tomats.” Support vector machines (SVM) may outper-
form Naive Bayes [15, 16] or other approaches such as
k-nearest neighbor [17] for text classification, and also125

allow for feature extraction. [18] performed best at the
ALTA 2018 patent classification task, using a method
based on SVMs.

Further approaches for patent classification are based
on neural network (NN) models [19]. [20, 14] describe130

the potentially high precision of NNs for patent classi-
fication and [21] find that they may outperform SVM,
particularly for shorter texts. Some recent advances in
the field of natural language processing rely on pre-
training and fine-tuning NN models (e.g., BERT [22],135

ULMFiT [23]). [24] outperformed previous approaches
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of patent classification using patent data to pre-train a
BERT convolutional neural network (CNN) model.

Pre-training models such as BERT require extensive
computational resources. Therefore, [25, 26] describe140

alternative models, achieving a significant reduction in
computational resource requirements with nearly sim-
ilar performance. A similar model, called Language
Modelling with Approximate Outputs (LMAO) is im-
plemented in the spaCy library3.145

For our analysis, we want to a compare binary classi-
fication performance of a pre-trained CNN with alterna-
tive approaches. Naive Bayes has been used as a base-
line for similar efforts [27]. We use a Bernoulli naive
Bayes (BernoulliNB) classifier as a baseline for our150

work, which accounts particularly for the binary deci-
sion. Further, we evaluate an SVM based model, which
has been successfully used for various patent classifica-
tion tasks. Also, we implement a random forest classi-
fier (RandomForest) and a k-nearest neighbor classifier155

(k-NN) for comparison.
BernoulliNB, SVM, RandomForest, and K-NN clas-

sifiers are implemented using Scikit-learn. Therefore,
we lemmatize words (using NLTK4), remove stop-
words, and extract the most relevant words per doc-160

ument through term frequency-inverse document fre-
quency scores (TF-IDF), using unigrams as well as bi-
grams. [28] finds that TF-IDF analysis using bigrams
(instead of unigrams only) may lead to higher accuracy,
as it accounts for complex multi-word expressions. We165

use the Scikit-learn model selection, GridSearchCV, for
optimization of model parameters.

We implement a CNN based classifier using spaCy,
which is a library aiming at providing a combination
of high accuracy and speed. This is especially relevant170

for patent classification, as it enables research on large
patent data sets with reasonable resources. Further, it
allows resource efficient LMAO pre-training for patent
specific context.

Our analysis includes two spaCy based approaches.175

First, we use the default large English language model.
Second, we use the same model pre-trained with patent
data (we refer to it as spaCypre). To assure high contex-
tual relevance of pre-training, we use the 25,212 patents
in the class G 05 from the USPTO-2m dataset. The al-180

gorithm ran 200 passes over the dataset until the loss
function did not further decrease. In addition, we run
the same models with the software prodigy5. Prodigy

3https://spacy.io/
4https://www.nltk.org
5https://prodi.gy

builds on spaCy and allows for straightforward imple-
mentation of natural language processing analysis and185

annotation. It provides a simple API requiring only ba-
sic knowledge in programming. We want to evaluate
whether using the tools compromises performance com-
pared to a manual implementation of spaCy.

4. Results and Discussion190

A comparison of the different algorithms shows
that the pre-trained CNN model outperforms remaining
models (see table 1) for each sample size. The regular
spaCy model performs second best for all sample sizes.
From the remaining models, the BernoulliNB classifier195

performed best for all sample sizes but the largest one.
The performance of the SVC model fluctuated strongly
for different sample sizes, and did even decrease, e.g.,
comparing the 1,500 dataset with the 250 dataset. Ran-
domForest and k-NN were within lowest performing200

classifiers for all sample sizes, however, they reach a
reasonable accuracy for the largest dataset. We thus find
that the pre-trained CNN model performs best as a bi-
nary patent classifier for hard-to-classify concepts.

The results further show a significant increase in per-205

formance through pre-training with patent data. The
benefits are strongest for small sample sizes, where
100 annotations led to accuracy scores of 77.2%, com-
pared to a score of 72.5% for the CNN without pre-
training. This score suggests, that pre-trained neu-210

ral network may be well suitable for active learning,
which aims at increasing the efficiency of annotations
through active learning [29]. The performance advan-
tage of pre-training, however, decreases with sample
size and almost disappears for the largest data set. Ac-215

cordingly, we find that pre-training is particularly use-
ful for small data sets, but provides negligible perfor-
mance advantages with large data sets of around 5,000
or more annotated samples. Future research may evalu-
ate, whether more expensive pre-training methods pro-220

vide even stronger models.
Our best-performing CNN achieves an accuracy of

0.832 and 0.866 with sample sizes of 500 and 1500
patents. These accuracy scores may be appropriate for
a number of further analyses and may encourage future225

researchers to use labeled patent data for their analyses.
Moreover, the spaCy LMAO pre-training does not re-

quire extensive computation capacity. Therefore, the
described methods may be suitable for a broad range of
researchers, providing high accuracy and enabling effi-230

cient implementation.
In addition to the results shown in the table, we ran

the spaCy models through the Prodigy software. The
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Model Sample size
100 250 500 1,500 5,000

BernoulliNB 0.706 0.776 0.798 0.808 0.842
SVC 0.612 0.536 0.794 0.774 0.858
RandomForest 0.590 0.668 0.752 0.770 0.836
K-NN 0.598 0.704 0.716 0.772 0.838
spaCy 0.726 0.786 0.806 0.858 0.872
spaCypre 0.772 0.800 0.832 0.866 0.874

Table 1: Comparison of patent classification performance. The models implemented are Bernoulli naive Bayes (BernoulliNB), support vector
machine (SVC), random forest, k-nearest neighbour, spaCy large English model, and a spaCy model pre-trained with patent data. The models have
been tested with different sample sizes, of 100, 250, 500, 1,500, and 5,000 patents in categories G 05D, and G 05B. Scores relate to recognition of
G 05D.

results were similar to both spaCy models and are thus
not listed in Table 1. This implies that relying on a sim-235

ple API that requires only basic knowledge in program-
ming comes at little performance costs, rendering the
methods proposed in this paper potentially accessible to
researchers from disciplines with typically less training
in programming, such as e.g. economists.240

5. Conclusions

Patent classification, in general, is an active research
field. Besides pre-classification of patent applications,
which is highly relevant for patent offices [17], also
other fields may benefit from advances in this area. Par-245

ticularly economists may benefit from improved meth-
ods of patent analyses. [30], for example, describe the
lack of high-quality data and empirically informed mod-
els as a key challenge for a better understanding of au-
tomation technologies. Patent data may be a rich source250

of data to address this challenge.
Our work contributes to patent as well as NLP re-

search by evaluating a powerful pre-trained CNN based
approach for binary patent classification. The proposed
method offers a fast, high accuracy tool enabling a broad255

range of researchers conducting patent classification or
other text classification tasks. We find that pre-training
significantly raises performance particularly in small
samples of annotated data, while the performance sur-
plus declines for larger samples.260

We further find that the methods provide a high accu-
racy, do not require high computational resources, and
that relying on Prodigy as a simple API does not result
in noticeable performance losses. This implies that the
methods proposed here are both useful and potentially265

accessible to researchers from other disciplines.
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