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Solow Growth Model

Develop a simple framework for the proximate causes and the
mechanics of economic growth and cross-country income
differences.

Solow-Swan model named after Robert (Bob) Solow and Trevor
Swan, or simply the Solow model

Before Solow growth model, the most common approach to
economic growth built on the Harrod-Domar model.

Harrod-Domar model emphasized potential dysfunctional aspects of
growth: e.g, how growth could go hand-in-hand with increasing
unemployment.

Solow model demonstrated why the Harrod-Domar model was not an
attractive place to start.

At the center of the Solow growth model is the neoclassical
aggregate production function.
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The Economic Environment of the Basic
Solow Model

Study of economic growth and development therefore necessitates
dynamic models.

Despite its simplicity, the Solow growth model is a dynamic general
equilibrium model (though many key features of dynamic general
equilibrium models, such as preferences and dynamic optimization
are missing in this model).
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Households and Production I

Closed economy, with a unique final good.

Discrete time running to an infinite horizon, time is indexed by
t = 0, 1, 2, ....

Economy is inhabited by a large number of households, and for now
households will not be optimizing.

This is the main difference between the Solow model and the
neoclassical growth model.

To fix ideas, assume all households are identical, so the economy
admits a representative household.
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Households and Production II
Assume households save a constant exogenous fraction s of their
disposable income
Same assumption used in basic Keynesian models and in the
Harrod-Domar model; at odds with reality.
Assume all firms have access to the same production function:
economy admits a representative firm , with a representative (or
aggregate) production function.
Aggregate production function for the unique final good is

Y (t) = F [K (t) , L (t) ,A (t)] (1)

Assume capital is the same as the final good of the economy, but
used in the production process of more goods.
A (t) is a shifter of the production function (1). Broad notion of
technology.
Major assumption: technology is free ; it is publicly available as a
non-excludable, non-rival good.
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Key Assumption

Assumption 1 (Continuity, Differentiability, Positive and Diminishin g
Marginal Products, and Constant Returns to Scale) The
production function F: R

3
+ → R+ is twice continuously

differentiable in K and L, and satisfies

FK (K , L,A) ≡
∂F(·)

∂K
> 0, FL(K , L,A) ≡

∂F(·)

∂L
> 0,

FKK (K , L,A) ≡
∂2F(·)

∂K 2
< 0, FLL(K , L,A) ≡

∂2F(·)

∂L2
< 0.

Moreover, F exhibits constant returns to scale in K and L.

Assume F exhibits constant returns to scale in K and L. I.e., it is
linearly homogeneous (homogeneous of degree 1) in these two
variables.
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Review

Definition Let K be an integer. The function g : R
K+2 → R is

homogeneous of degree m in x ∈ R and y ∈ R iff

g (λx ,λy , z) = λ
mg (x , y , z) for all λ ∈ R+ and z ∈ R

K .

Theorem (Euler’s Theorem) Suppose that g : R
K+2 → R is

continuously differentiable in x ∈ R and y ∈ R, with partial
derivatives denoted by gx and gy and is homogeneous of
degree m in x and y . Then

mg (x , y , z) = gx (x , y , z) x + gy (x , y , z) y

for all x ∈ R, y ∈ R and z ∈ R
K
.

Moreover, gx (x , y , z) and gy (x , y , z) are themselves
homogeneous of degree m − 1 in x and y .
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Market Structure, Endowments and Market
Clearing I

We will assume that markets are competitive, so ours will be a
prototypical competitive general equilibrium model.
Households own all of the labor, which they supply inelastically.
Endowment of labor in the economy, L̄ (t), and all of this will be
supplied regardless of the price.
The labor market clearing condition can then be expressed as:

L (t) = L̄ (t) (2)

for all t , where L (t) denotes the demand for labor (and also the level
of employment).
More generally, should be written in complementary slackness form.
In particular, let the wage rate at time t be w (t), then the labor
market clearing condition takes the form

L (t) ≤ L̄ (t) ,w (t) ≥ 0 and (L (t)− L̄ (t))w (t) = 0
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Market Structure, Endowments and Market
Clearing II

But Assumption 1 and competitive labor markets make sure that
wages have to be strictly positive.
Households also own the capital stock of the economy and rent it to
firms.
Denote the rental price of capital at time t by R (t).
Capital market clearing condition:

K s (t) = K d (t)

Take households’ initial holdings of capital, K (0), as given
P (t) is the price of the final good at time t , normalize the price of the
final good to 1 in all periods.
Build on an insight by Kenneth Arrow (Arrow, 1964) that it is sufficient
to price securities (assets) that transfer one unit of consumption from
one date (or state of the world) to another.
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Market Structure, Endowments and Market
Clearing III

Implies that we need to keep track of an interest rate across periods,
r (t), and this will enable us to normalize the price of the final good to
1 in every period.

General equilibrium economies, where different commodities
correspond to the same good at different dates.

The same good at different dates (or in different states or localities) is
a different commodity.

Therefore, there will be an infinite number of commodities.

Assume capital depreciates, with “exponential form,” at the rate δ: out
of 1 unit of capital this period, only 1 − δ is left for next period.

Loss of part of the capital stock affects the interest rate (rate of return
to savings) faced by the household.

Interest rate faced by the household will be r (t) = R (t)− δ.
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Firm Optimization I

Only need to consider the problem of a representative firm:

max
L(t)≥0,K (t)≥0

F [K (t), L(t),A(t)]− w (t) L (t)− R (t)K (t) . (3)

Since there are no irreversible investments or costs of adjustments,
the production side can be represented as a static maximization
problem.

Equivalently, cost minimization problem.

Features worth noting:

1 Problem is set up in terms of aggregate variables.
2 Nothing multiplying the F term, price of the final good has been

normalized to 1.
3 Already imposes competitive factor markets: firm is taking as given

w (t) and R (t).
4 Concave problem, since F is concave.
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Firm Optimization II

Since F is differentiable, first-order necessary conditions imply:

w (t) = FL[K (t), L(t),A(t)], (4)

and
R (t) = FK [K (t), L(t),A(t)]. (5)

Note also that in (4) and (5), we used K (t) and L (t), the amount of
capital and labor used by firms.

In fact, solving for K (t) and L (t), we can derive the capital and labor
demands of firms in this economy at rental prices R (t) and w (t).

Thus we could have used K d (t) instead of K (t), but this additional
notation is not necessary.
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Firm Optimization III

Proposition Suppose Assumption 1 holds. Then in the equilibrium of the
Solow growth model, firms make no profits, and in particular,

Y (t) = w (t) L (t) + R (t)K (t) .

Proof: Follows immediately from Euler Theorem for the case of
m = 1, i.e., constant returns to scale.

Thus firms make no profits, so ownership of firms does not need to
be specified.
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Second Key Assumption

Assumption 2 (Inada conditions) F satisfies the Inada conditions

lim
K→0

FK (·) = ∞ and lim
K→∞

FK (·) = 0 for all L > 0 all A

lim
L→0

FL (·) = ∞ and lim
L→∞

FL (·) = 0 for all K > 0 all A.

Important in ensuring the existence of interior equilibria.

It can be relaxed quite a bit, though useful to get us started.
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Production Functions

F(K, L, A)

K
0

K
0

Panel A Panel B

F(K, L, A)

Figure 1.1: Production functions and the marginal product of capital. The
example in Panel A satisfies the Inada conditions in Assumption 2, while the
example in Panel B does not.
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Fundamental Law of Motion of the Solow
Model I

Recall that K depreciates exponentially at the rate δ, so

K (t + 1) = (1 − δ)K (t) + I (t) , (6)

where I (t) is investment at time t .

From national income accounting for a closed economy,

Y (t) = C (t) + I (t) , (7)

Using (1), (6) and ( 7), any feasible dynamic allocation in this
economy must satisfy

K (t + 1) ≤ F [K (t) , L (t) ,A (t)] + (1 − δ)K (t)− C (t)

for t = 0, 1, ....

Behavioral rule of the constant saving rate simplifies the structure of
equilibrium considerably.
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Fundamental Law of Motion of the Solow
Model II

Note not derived from the maximization of utility function: welfare
comparisons have to be taken with a grain of salt.

Since the economy is closed (and there is no government spending),

S (t) = I (t) = Y (t)− C (t) .

Individuals are assumed to save a constant fraction s of their income,

S (t) = sY (t) , (8)

C (t) = (1 − s)Y (t) (9)

Implies that the supply of capital resulting from households’ behavior
can be expressed as

K s (t) = (1 − δ)K (t) + S (t) = (1 − δ)K (t) + sY (t) .
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Fundamental Law of Motion of the Solow
Model III

Setting supply and demand equal to each other, this implies
K s (t) = K (t).

From (2), we have L (t) = L̄ (t).

Combining these market clearing conditions with (1) and (6), we
obtain the fundamental law of motion of the Solow growth model:

K (t + 1) = sF [K (t) , L (t) ,A (t)] + (1 − δ)K (t) . (10)

Nonlinear difference equation.

Equilibrium of the Solow growth model is described by this equation
together with laws of motion for L (t) (or L̄ (t)) and A (t).
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Definition of Equilibrium I

Solow model is a mixture of an old-style Keynesian model and a
modern dynamic macroeconomic model.

Households do not optimize, but firms still maximize and factor
markets clear.

Definition In the basic Solow model for a given sequence of
{L (t) ,A (t)}∞

t=0 and an initial capital stock K (0), an
equilibrium path is a sequence of capital stocks, output
levels, consumption levels, wages and rental rates
{K (t) ,Y (t) ,C (t) ,w (t) ,R (t)}∞

t=0 such that K (t)
satisfies (10), Y (t) is given by (1), C (t) is given by (24),
and w (t) and R (t) are given by (4) and (5).

Note an equilibrium is defined as an entire path of allocations and
prices: not a static object.
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Equilibrium Without Population Growth and
Technological Progress I

Make some further assumptions, which will be relaxed later:
1 There is no population growth; total population is constant at some

level L > 0. Since individuals supply labor inelastically, L (t) = L.
2 No technological progress, so that A (t) = A.

Define the capital-labor ratio of the economy as

k (t) ≡
K (t)

L
, (11)

Using the constant returns to scale assumption, we can express
output (income) per capita, y (t) ≡ Y (t) /L, as

y (t) = F

[

K (t)

L
, 1,A

]

≡ f (k (t)) . (12)
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Equilibrium Without Population Growth and
Technological Progress II

Note that f (k) here depends on A, so I could have written f (k ,A);
but A is constant and can be normalized to A = 1.

From Euler Theorem,

R (t) = f ′ (k (t)) > 0 and

w (t) = f (k (t))− k (t) f ′ (k (t)) > 0. (13)

Both are positive from Assumption 1.
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Example: The Cobb-Douglas Production
Function I

Very special production function and many interesting phenomena
are ruled out, but widely used:

Y (t) = F [K (t) , L (t) ,A (t)]

= AK (t)α L (t)1−α , 0 < α < 1. (14)

Satisfies Assumptions 1 and 2.

Dividing both sides by L (t),

y (t) = Ak (t)α
,

From equation (13),

R (t) =
∂Ak (t)α

∂k (t)
,

= αAk (t)−(1−α)
.
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Example: The Cobb-Douglas Production
Function II

Alternatively, in terms of the original production function (14),

R (t) = αAK (t)α−1 L (t)1−α

= αAk (t)−(1−α)
,

Similarly, from (13),

w (t) = Ak (t)α − αAk (t)−(1−α) × k (t)

= (1 − α)AK (t)α L (t)−α
,
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Equilibrium Without Population Growth and
Technological Progress I

The per capita representation of the aggregate production function
enables us to divide both sides of (10) by L to obtain:

k (t + 1) = sf (k (t)) + (1 − δ) k (t) . (15)

Since it is derived from (10), it also can be referred to as the
equilibrium difference equation of the Solow model

The other equilibrium quantities can be obtained from the
capital-labor ratio k (t).

Definition A steady-state equilibrium without technological progress
and population growth is an equilibrium path in which
k (t) = k∗ for all t .

The economy will tend to this steady-state equilibrium over time (but
never reach it in finite time).
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k(t+1)

k(t)

45°

sf(k(t))+(1–�)k(t)

k*

k*0

Figure 2.1: Determination of the steady-state capital-labor ratio in the Solow
model without population growth and technological change.
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Equilibrium Without Population Growth and
Technological Progress II

The thick curve represents (15) and the dashed line corresponds to
the 45◦ line.

Their (positive) intersection gives the steady-state value of the
capital-labor ratio k∗,

f (k∗)

k∗
=

δ

s
. (16)

There is another intersection at k = 0, because the figure assumes
that f (0) = 0.

Will ignore this intersection throughout:

1 If capital is not essential, f (0) will be positive and k = 0 will cease to
be a steady-state equilibrium

2 This intersection, even when it exists, is an unstable point
3 It has no economic interest for us.
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Equilibrium Without Population Growth and
Technological Progress III

k(t+1)

k(t)

45°

k*

k*

ε

sf(k(t))+(1−δ)k(t)

0

Figure 2.2: Unique steady state in the basic Solow model when f (0) = ε > 0.
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Equilibrium Without Population Growth and
Technological Progress IV

Alternative visual representation of the steady state: intersection
between δk and the function sf (k). Useful because:

1 Depicts the levels of consumption and investment in a single figure.
2 Emphasizes the steady-state equilibrium; sets investment, sf (k),

equal to the amount of capital that needs to be “replenished”, δk .
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output

k(t)

f(k*)

k*

�k(t)

f(k(t))

sf(k*)
sf(k(t))

consumption

investment

0

Figure 2.3: Investment and consumption in the steady-state equilibrium.
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Equilibrium Without Population Growth and
Technological Progress V

Proposition Consider the basic Solow growth model and suppose that
Assumptions 1 and 2 hold. Then there exists a unique
steady-state equilibrium where the capital-labor ratio
k∗ ∈ (0,∞) is given by (16), per capita output is given by

y∗ = f (k∗) (17)

and per capita consumption is given by

c∗ = (1 − s) f (k∗) . (18)
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Proof of Theorem

The preceding argument establishes that any k∗ that satisfies (16) is
a steady state.

To establish existence, note that from Assumption 2 (and from
L’Hôpital’s rule), limk→0 f (k) /k = ∞ and limk→∞ f (k) /k = 0.

Moreover, f (k) /k is continuous from Assumption 1, so by the
intermediate value theorem there exists k∗ such that (16) is satisfied.

To see uniqueness, differentiate f (k) /k with respect to k , which
gives

∂ [f (k) /k ]

∂k
=

f ′ (k) k − f (k)

k2
= −

w

k2
< 0, (19)

where the last equality uses (13).

Since f (k) /k is everywhere (strictly) decreasing, there can only
exist a unique value k∗ that satisfies (16).

Equations (17) and (18) then follow by definition.
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Examples

k(t+1)

k(t)

45°

sf(k(t))+(1–�)k(t)

0

k(t+1)

k(t)

45°

sf(k(t))+(1–�)k(t)

0

k(t+1)

k(t)

45°

sf(k(t))+(1–�)k(t)

0
Panel A Panel B Panel C

Figure 2.4: Examples of nonexistence and nonuniqueness of interior steady
states when Assumptions 1 and 2 are not satisfied.
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Equilibrium Without Population Growth and
Technological Progress VI

Figure 2.4 shows through a series of examples why Assumptions 1
and 2 cannot be dispensed with for the existence and uniqueness
results.

Generalize the production function in one simple way, and assume
that

f (k) = af̃ (k) ,

a > 0, so that a is a (“Hicks-neutral”) shift parameter, with greater
values corresponding to greater productivity of factors..

Since f (k) satisfies the regularity conditions imposed above, so
does f̃ (k).
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Equilibrium Without Population Growth and
Technological Progress VII

Proposition Suppose Assumptions 1 and 2 hold and f (k) = af̃ (k).
Denote the steady-state level of the capital-labor ratio by
k∗ (a, s, δ) and the steady-state level of output by
y∗ (a, s, δ) when the underlying parameters are a, s and δ.
Then we have

∂k∗ (·)

∂a
> 0,

∂k∗ (·)

∂s
> 0 and

∂k∗ (·)

∂δ
< 0

∂y∗ (·)

∂a
> 0,

∂y∗ (·)

∂s
> 0 and

∂y∗ (·)

∂δ
< 0.
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Equilibrium Without Population Growth and
Technological Progress VIII

Proof of comparative static results: follows immediately by writing

f̃ (k∗)

k∗
=

δ

as
,

which holds for an open set of values of k∗. Now apply the implicit
function theorem to obtain the results.

For example,
∂k∗

∂s
=

δ (k∗)2

s2w∗
> 0

where w∗ = f (k∗)− k∗f ′ (k∗) > 0.

The other results follow similarly.
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Equilibrium Without Population Growth and
Technological Progress IX

Same comparative statics with respect to a and δ immediately apply
to c∗ as well.
But c∗ will not be monotone in the saving rate (think, for example, of
s = 1).
In fact, there will exist a specific level of the saving rate, sgold , referred
to as the “golden rule” saving rate, which maximizes c∗.
But cannot say whether the golden rule saving rate is “better” than
some other saving rate.
Write the steady-state relationship between c∗ and s and suppress
the other parameters:

c∗ (s) = (1 − s) f (k∗ (s)) ,

= f (k∗ (s))− δk∗ (s) ,

The second equality exploits that in steady state sf (k) = δk .
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Equilibrium Without Population Growth and
Technological Progress X

Differentiating with respect to s,

∂c∗ (s)

∂s
=

[

f ′ (k∗ (s))− δ
] ∂k∗

∂s
. (20)

sgold is such that ∂c∗ (sgold) /∂s = 0. The corresponding
steady-state golden rule capital stock is defined as k∗

gold .

Proposition In the basic Solow growth model, the highest level of
steady-state consumption is reached for sgold , with the
corresponding steady-state capital level k∗

gold such that

f ′
(

k∗
gold

)

= δ. (21)
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Golden Rule

consumption

savings rate

(1–s)f(k*gold)

s*gold 10

Figure 2.5: The “golden rule” level of savings rate, which maximizes steady-state
consumption.
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Proof of Proposition: Golden Rule

By definition ∂c∗ (sgold) /∂s = 0.

From Proposition above, ∂k∗/∂s > 0, thus (20) can be equal to zero
only when f ′ (k∗ (sgold)) = δ.

Moreover, when f ′ (k∗ (sgold)) = δ, it can be verified that
∂2c∗ (sgold) /∂s2

< 0, so f ′ (k∗ (sgold)) = δ indeed corresponds a
local maximum.

That f ′ (k∗ (sgold)) = δ also yields the global maximum is a
consequence of the following observations:

∀ s ∈ [0, 1] we have ∂k∗/∂s > 0 and moreover, when s < sgold ,
f ′ (k∗ (s))− δ > 0 by the concavity of f , so ∂c∗ (s) /∂s > 0 for all
s < sgold .
by the converse argument, ∂c∗ (s) /∂s < 0 for all s > sgold .
Therefore, only sgold satisfies f ′ (k∗ (s)) = δ and gives the unique
global maximum of consumption per capita.
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Equilibrium Without Population Growth and
Technological Progress XI

When the economy is below k∗
gold , higher saving will increase

consumption; when it is above k∗
gold , steady-state consumption can

be increased by saving less.

In the latter case, capital-labor ratio is too high so that individuals are
investing too much and not consuming enough (dynamic
inefficiency).

But no utility function, so statements about “inefficiency” have to be
considered with caution.

Such dynamic inefficiency will not arise once we endogenize
consumption-saving decisions.
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Review of the Discrete-Time Solow Model

Per capita capital stock evolves according to

k (t + 1) = sf (k (t)) + (1 − δ) k (t) . (22)

The steady-state value of the capital-labor ratio k∗ is given by

f (k∗)

k∗
=

δ

s
. (23)

Consumption is given by

C (t) = (1 − s)Y (t) (24)

And factor prices are given by

R (t) = f ′ (k (t)) > 0 and

w (t) = f (k (t))− k (t) f ′ (k (t)) > 0. (25)
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Steady-State Equilibrium

k(t+1)

k(t)

45°

sf(k(t))+(1–�)k(t)

k*

k*0

Figure 3.1: Steady-state capital-labor ratio in the Solow model.
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Transitional Dynamics

Equilibrium path: not simply steady state, but entire path of capital
stock, output, consumption and factor prices.

In engineering and physical sciences, equilibrium is point of rest of
dynamical system, thus the steady-state equilibrium.
In economics, non-steady-state behavior also governed by optimizing
behavior of households and firms and market clearing.

Need to study the “transitional dynamics” of the equilibrium difference
equation (22) starting from an arbitrary initial capital-labor ratio
k (0) > 0.

Key question: whether economy will tend to steady state and how it
will behave along the transition path.
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Transitional Dynamics: Review I

Consider the nonlinear system of autonomous difference equations,

x (t + 1) = G (x (t)) , (26)

x (t) ∈ R
n and G : R

n → R
n.

Let x∗ be a fixed point of the mapping G (·), i.e.,

x∗ = G (x∗) .

x∗ is sometimes referred to as “an equilibrium point” of (26).

We will refer to x∗ as a stationary point or a steady state of (26).

Definition A steady state x∗ is (locally) asymptotically stable if there
exists an open set B (x∗) ∋ x∗ such that for any solution
{x (t)}∞

t=0 to (26) with x (0) ∈ B (x∗), we have x (t) → x∗.
Moreover, x∗ is globally asymptotically stable if for all
x (0) ∈ R

n, for any solution {x (t)}∞

t=0, we have x (t) → x∗.
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Transitional Dynamics: Review II

Simple Result About Stability

Let x (t) , a, b ∈ R, then the unique steady state of the linear
difference equation x (t + 1) = ax (t) + b is globally asymptotically
stable (in the sense that x (t) → x∗ = b/ (1 − a)) if |a| < 1.

Suppose that g : R → R is differentiable at the steady state x∗,
defined by g (x∗) = x∗. Then, the steady state of the nonlinear
difference equation x (t + 1) = g (x (t)), x∗, is locally asymptotically
stable if |g ′ (x∗)| < 1. Moreover, if |g ′ (x)| < 1 for all x ∈ R, then
x∗ is globally asymptotically stable.
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Transitional Dynamics in the Discrete Time
Solow Model

Proposition Suppose that Assumptions 1 and 2 hold, then the
steady-state equilibrium of the Solow growth model
described by the difference equation (22) is globally
asymptotically stable, and starting from any k (0) > 0, k (t)
monotonically converges to k∗.
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Proof of Proposition: Transitional Dynamics I

Let g (k) ≡ sf (k) + (1 − δ) k . First observe that g ′ (k) exists and is
always strictly positive, i.e., g ′ (k) > 0 for all k .

Next, from (22),
k (t + 1) = g (k (t)) , (27)

with a unique steady state at k∗.

From (23), the steady-state capital k∗ satisfies δk∗ = sf (k∗), or

k∗ = g (k∗) . (28)

Recall that f (·) is concave and differentiable from Assumption 1 and
satisfies f (0) ≥ 0 from Assumption 2.
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Proof of Proposition: Transitional Dynamics
II

For any strictly concave differentiable function,

f (k) > f (0) + kf ′ (k) ≥ kf ′ (k) , (29)

The second inequality uses the fact that f (0) ≥ 0.

Since (29) together with (23) implies that δ = sf (k∗) /k∗
> sf ′ (k∗),

we have g ′ (k∗) = sf ′ (k∗) + 1 − δ < 1. Therefore,

g ′ (k∗) ∈ (0, 1) .

The Simple Result then establishes local asymptotic stability.

Solow The Solow Model in Discrete Time Transitional Dynamics in the Discrete Time Solow Model

Ingrid Ott — Tim Deeken – Endogenous Growth Theory October 21st, 2010 48/52



Proof of Proposition: Transitional Dynamics
III

To prove global stability, note that for all k (t) ∈ (0, k∗),

k (t + 1)− k∗ = g (k (t))− g (k∗)

= −
∫ k∗

k(t)
g ′ (k) dk ,

< 0

First line follows by subtracting (28) from (27), second line uses the
fundamental theorem of calculus, and third line follows from the
observation that g ′ (k) > 0 for all k .
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Proof of Proposition: Transitional Dynamics
IV

Next, (22) also implies

k (t + 1)− k (t)

k (t)
= s

f (k (t))

k (t)
− δ

> s
f (k∗)

k∗
− δ

= 0,

Second line uses the fact that f (k) /k is decreasing in k (from (29)
above) and last line uses the definition of k∗.
These two arguments together establish that for all k (t) ∈ (0, k∗),
k (t + 1) ∈ (k (t) , k∗).
An identical argument implies that for all k (t) > k∗,
k (t + 1) ∈ (k∗

, k (t)).
Therefore, {k (t)}∞

t=0 monotonically converges to k∗ and is globally
stable.
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Transitional Dynamics in the Discrete Time
Solow Model III

Stability result can be seen diagrammatically in the Figure:

Starting from initial capital stock k (0) < k∗, the economy grows
towards k∗; capital deepening and growth of per capita income.
If the economy were to start with k ′ (0) > k∗, it would reach the
steady state by decumulating capital and by contracting.

Proposition Suppose that Assumptions 1 and 2 hold, and k (0) < k∗,
then {w (t)}∞

t=0 is an increasing sequence and {R (t)}∞

t=0
is a decreasing sequence. If k (0) > k∗ , the opposite
results apply.

Thus far the Solow growth model has a number of nice properties,
but no growth, except when the economy starts with k (0) < k∗.
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Transitional Dynamics in Figure

45°

k*

k*k(0) k’(0)0

k(t+1)

k(t)

Figure 3.2: Transitional dynamics in the basic Solow model.
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