The Solow Model in Continuous Time 0000000 Ingrid Ott - Tim Deeken - Endogenous Growth Theory Transitional Dynamics in the Continuous Time Solow Model

- When $\Delta t = 0$, this equation is just an identity. When $\Delta t = 1$, it gives (30).
 - In-between it is a linear approximation, not too bad if $g(x) \simeq g(x(t))$ for all $x \in [x(t), x(t+1)]$

Start with a simple difference equation

$$x(t+1) - x(t) = g(x(t)).$$
 (30)

Now consider the following approximation for any $\Delta t \in [0, 1]$,

$$oldsymbol{x}\left(t+\Delta t
ight)-oldsymbol{x}\left(t
ight)\simeq\Delta t\cdot oldsymbol{g}\left(oldsymbol{x}\left(t
ight)
ight)$$
 ,

From Difference to Differential Equations II

• Divide both sides of this equation by Δt , and take limits

$$\lim_{\Delta t \to 0} \frac{x\left(t + \Delta t\right) - x\left(t\right)}{\Delta t} = \dot{x}\left(t\right) \simeq g\left(x\left(t\right)\right),$$
(31)

where

$$\dot{x}(t) \equiv rac{dx(t)}{dt}$$

Equation (31) is a differential equation representing (30) for the case in which t and t + 1 is "small".

The Solow Model in Continuous Time ●●○○○○○ Ingrid Ott — Tim Deeken – Endogenous Growth Theory Transitional Dynamics in the Continuous Time Solow Model

The Fundamental Equation of the Solow Model in Continuous Time I

- Nothing has changed on the production side, so (25) still give the factor prices, now interpreted as instantaneous wage and rental rates.
- Savings are again

$$\mathbf{S}\left(t
ight)=\mathbf{s}\mathbf{Y}\left(t
ight)$$
 ,

- Consumption is given by (24) above.
- Introduce population growth,

$$L(t) = \exp(nt) L(0)$$
. (32)

Recall

$$k(t) \equiv \frac{K(t)}{L(t)},$$

The Solow Model in Continuous Time ○●●○○○○○ Ingrid Ott — Tim Deeken – Endogenous Growth Theory Transitional Dynamics in the Continuous Time Solow Model

October 21st, 2010

The Fundamental Equation of the Solow Model in Continuous Time II

Implies

$$\frac{\dot{k}(t)}{k(t)} = \frac{\dot{K}(t)}{K(t)} - \frac{\dot{L}(t)}{L(t)},$$
$$= \frac{\dot{K}(t)}{K(t)} - n.$$

From the limiting argument leading to equation (31),

$$\dot{\mathcal{K}}\left(t
ight)=\mathsf{sF}\left[\mathcal{K}\left(t
ight)$$
 , $\mathcal{L}\left(t
ight)$, $\mathcal{A}(t)
ight]-\delta\mathcal{K}\left(t
ight)$.

 Using the definition of k (t) and the constant returns to scale properties of the production function,

$$\frac{\dot{k}(t)}{k(t)} = s \frac{f(k(t))}{k(t)} - (n+\delta), \qquad (33)$$

 Transitional Dynamics in the Continuous Time Solow Model

The Fundamental Equation of the Solow Model in Continuous Time III

Definition In the basic Solow model in continuous time with population growth at the rate *n*, no technological progress and an initial capital stock K(0), an equilibrium path is a sequence of capital stocks, labor, output levels, consumption levels, wages and rental rates

 $[K(t), L(t), Y(t), C(t), w(t), R(t)]_{t=0}^{\infty}$ such that L(t) satisfies (32), $k(t) \equiv K(t) / L(t)$ satisfies (33), Y(t) is given by the aggregate production function, C(t) is given by (24), and w(t) and R(t) are given by (25).

As before, steady-state equilibrium involves k (t) remaining constant at some level k*.

The Solow Model in Continuous Time 0000000 Ingrid Ott — Tim Deeken – Endogenous Growth Theory

Steady State With Population Growth

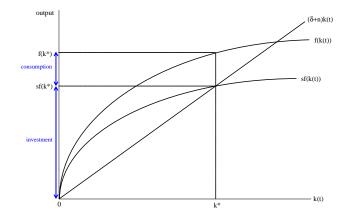


Figure 4.1: Investment and consumption in the steady-state equilibrium with population growth.

The Solow Model in Continuous Time 0000000 Ingrid Ott — Tim Deeken – Endogenous Growth Theory Transitional Dynamics in the Continuous Time Solow Model

October 21st, 2010

Steady State of the Solow Model in Continuous Time

Equilibrium path (33) has a unique steady state at k*, which is given by a slight modification of (23) above:

$$\frac{f(k^*)}{k^*} = \frac{n+\delta}{s}.$$
(34)

Proposition Consider the basic Solow growth model in continuous time and suppose that Assumptions 1 and 2 hold. Then there exists a unique steady-state equilibrium where the capital-labor ratio is equal to $k^* \in (0, \infty)$ and is given by (34), per capita output is given by

$$y^* = f(k^*)$$

and per capita consumption is given by

$$\mathbf{c}^{*}=\left(\mathbf{1}-\mathbf{s}\right)f\left(\mathbf{k}^{*}\right).$$

The Solow Model in Continuous Time 0000000 Ingrid Ott — Tim Deeken – Endogenous Growth Theory Transitional Dynamics in the Continuous Time Solow Model

Steady State of the Solow Model in Continuous Time II

• Moreover, again defining $f(k) = a\tilde{f}(k)$, we obtain:

Proposition Suppose Assumptions 1 and 2 hold and $f(k) = a\tilde{f}(k)$. Denote the steady-state equilibrium level of the capital-labor ratio by k^* (a, s, δ , n) and the steady-state level of output by y^* (a, s, δ , n) when the underlying parameters are given by a. s and δ . Then we have

$$\frac{\partial k^{*}\left(\cdot\right)}{\partial a} > 0, \frac{\partial k^{*}\left(\cdot\right)}{\partial s} > 0, \frac{\partial k^{*}\left(\cdot\right)}{\partial \delta} < 0 \text{ and } \frac{\partial k^{*}\left(\cdot\right)}{\partial n} < 0$$
$$\frac{\partial y^{*}\left(\cdot\right)}{\partial a} > 0, \frac{\partial y^{*}\left(\cdot\right)}{\partial s} > 0, \frac{\partial y^{*}\left(\cdot\right)}{\partial \delta} < 0 \text{ and } \frac{\partial y^{*}\left(\cdot\right)}{\partial n} < 0.$$

New result is higher n, also reduces the capital-labor ratio and output per capita.

means there is more labor to use capital, which only accumulates slowly, thus the equilibrium capital-labor ratio ends up lower.

Transitional Dynamics in the Continuous Time Solow Model I

Simple Result about Stability In Continuous Time Model

• Let $g : \mathbb{R} \to \mathbb{R}$ be a differentiable function and suppose that there exists a unique x^* such that $g(x^*) = 0$. Moreover, suppose g(x) < 0 for all $x > x^*$ and g(x) > 0 for all $x < x^*$. Then the steady state of the nonlinear differential equation $\dot{x}(t) = g(x(t))$, x^* , is globally asymptotically stable, i.e., starting with any x(0), $x(t) \to x^*$.

The Solow Model in Continuous Time

Transitional Dynamics in the Continuous Time Solow Model

Simple Result in Figure

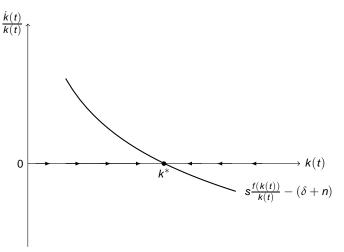


Figure 5.1: Dynamics of the capital-labor ration in the basic Solow model

The Solow Model in Continuous Time

Transitional Dynamics in the Continuous Time Solow Model

October 21st, 2010 62/107

Transitional Dynamics in the Continuous Time Solow Model II

Proposition Suppose that Assumptions 1 and 2 hold, then the basic Solow growth model in continuous time with constant population growth and no technological change is globally asymptotically stable, and starting from any k(0) > 0, $k(t) \rightarrow k^*$.

- **Proof:** Follows immediately from the Theorem above by noting whenever $k < k^*$, $sf(k) (n + \delta) k > 0$ and whenever $k > k^*$, $sf(k) (n + \delta) k < 0$.
- Figure: plots the right-hand side of (33) and makes it clear that whenever k < k*, k > 0 and whenever k > k*, k < 0, so k monotonically converges to k*.

The Solow Model in Continuous Time

Dynamics with Cobb-Douglas Production Function I

Return to the Cobb-Douglas Example

$$F[K, L, A] = AK^{\alpha}L^{1-\alpha}$$
 with $0 < \alpha < 1$.

- Special, mainly because elasticity of substitution between capital and labor is 1.
- Recall for a homothetic production function F (K, L), the elasticity of substitution is

$$\sigma \equiv -\left[\frac{\partial \ln\left(F_{K}/F_{L}\right)}{\partial \ln\left(K/L\right)}\right]^{-1},$$
(35)

- F is required to be homothetic, so that F_K/F_L is only a function of K/L.
- For the Cobb-Douglas production function

$$F_{K}/F_{L} = (\alpha/(1-\alpha)) \cdot (L/K)$$
, thus $\sigma = 1$.

The Solow Model in Continuous Time

Dynamics with Cobb-Douglas Production Function II

Thus when the production function is Cobb-Douglas and factor markets are competitive, equilibrium factor shares will be constant:

$$\begin{aligned} \alpha_{K}(t) &= \frac{R(t) K(t)}{Y(t)} \\ &= \frac{F_{K}(K(t), L(t)) K(t)}{Y(t)} \\ &= \frac{\alpha A [K(t)]^{\alpha - 1} [L(t)]^{1 - \alpha} K(t)}{A [K(t)]^{\alpha} [L(t)]^{1 - \alpha}} \\ &= \alpha. \end{aligned}$$

- Similarly, the share of labor is $\alpha_L(t) = 1 \alpha$.
- Reason: with $\sigma = 1$, as capital increases, its marginal product decreases proportionally, leaving the capital share constant.

The Solow Model in Continuous Time

Dynamics with Cobb-Douglas Production Function III

Per capita production function takes the form f (k) = Ak^α, so the steady state is given again as

$$A\left(k^*\right)^{\alpha-1}=\frac{n+\delta}{s}$$

or

$$k^* = \left(rac{\mathbf{s}\mathbf{A}}{n+\delta}
ight)^{rac{1}{1-lpha}}$$
 ,

- $\kappa = \left(\frac{1}{n+\delta}\right)$
- k^* is increasing in s and A and decreasing in n and δ .
- In addition, k^* is increasing in α : higher α implies less diminishing returns to capital.
- Transitional dynamics are also straightforward in this case:

$$\dot{k}(t) = \mathsf{sA}[k(t)]^{\alpha} - (n+\delta)k(t)$$

with initial condition k(0).

The Solow Model in Continuous Time

Dynamics with Cobb-Douglas Production Function IV

• To solve this equation, let $x(t) \equiv k(t)^{1-\alpha}$,

$$\dot{\mathbf{x}}\left(t
ight)=\left(1-lpha
ight)\mathbf{s}\mathbf{A}-\left(1-lpha
ight)\left(n+\delta
ight)\mathbf{x}\left(t
ight)$$
 ,

General solution

$$x(t) = \frac{sA}{n+\delta} + \left[x(0) - \frac{sA}{n+\delta}\right] \exp\left(-(1-\alpha)(n+\delta)t\right).$$

In terms of the capital-labor ratio

$$k(t) = \left\{\frac{sA}{n+\delta} + \left[\left[k(0)\right]^{1-\alpha} - \frac{sA}{\delta}\right] \exp\left(-\left(1-\alpha\right)\left(n+\delta\right)t\right)\right\}^{\frac{1}{1-\alpha}}$$

The Solow Model in Continuous Time

Ingrid Ott — Tim Deeken – Endogenous Growth Theory

Transitional Dynamics in the Continuous Time Solow Model

October 21st, 2010

Dynamics with Cobb-Douglas Production Function V

This solution illustrates:

- starting from any k (0), k (t) → k* = (sA/ (n+δ))^{1/(1-α)}, and rate of adjustment is related to (1 − α) (n + δ),
- more specifically, gap between k(0) and its steady-state value is closed at the exponential rate $(1 \alpha)(n + \delta)$.
- Intuitive:
 - higher α, less diminishing returns, slows down rate at which marginal and average product of capital declines, reduces rate of adjustment to steady state.
 - smaller δ and smaller *n*: slow down the adjustment of capital per worker and thus the rate of transitional dynamics.

The Solow Model in Continuous Time

Constant Elasticity of Substitution Production Function I

- Imposes a constant elasticity, σ , not necessarily equal to 1.
- Consider a vector-valued index of technology $\mathbf{A}(t) = (A_H(t), A_K(t), A_L(t)).$
- CES production function can be written as

$$\begin{aligned} \mathbf{Y}(t) &= \mathbf{F}\left[\mathbf{K}(t), \mathbf{L}(t), \mathbf{A}(t)\right] \\ &\equiv \mathbf{A}_{H}(t)\left[\gamma\left(\mathbf{A}_{K}(t)\,\mathbf{K}(t)\right)^{\frac{\sigma-1}{\sigma}} + (1-\gamma)\left(\mathbf{A}_{L}(t)\,\mathbf{L}(t)\right)^{\frac{\sigma-1}{\sigma}}\right]^{\frac{\sigma}{\sigma-1}} \end{aligned}$$

- A_H (t) > 0, A_K (t) > 0 and A_L (t) > 0 are three different types of technological change
- $\gamma \in (0, 1)$ is a distribution parameter,

The Solow Model in Continuous Time

Constant Elasticity of Substitution Production Function II

• $\sigma \in [0,\infty]$ is the elasticity of substitution: easy to verify that

$$\frac{F_{\mathcal{K}}}{F_{L}} = \frac{\gamma A_{\mathcal{K}}(t)^{\frac{\sigma-1}{\sigma}} \mathcal{K}(t)^{-\frac{1}{\sigma}}}{(1-\gamma) A_{L}(t)^{\frac{\sigma-1}{\sigma}} L(t)^{-\frac{1}{\sigma}}},$$

Thus, indeed have

$$\sigma = -\left[\frac{\partial \ln\left(F_{K}/F_{L}\right)}{\partial \ln\left(K/L\right)}\right]^{-1}$$

The Solow Model in Continuous Time

Transitional Dynamics in the Continuous Time Solow Model

.

October 21st, 2010

Constant Elasticity of Substitution Production Function III

• As $\sigma \rightarrow$ 1, the CES production function converges to the Cobb-Douglas

$$Y(t) = A_{H}(t) (A_{K}(t))^{\gamma} (A_{L}(t))^{1-\gamma} (K(t))^{\gamma} (L(t))^{1-\gamma}$$

• As $\sigma \to \infty$, the CES production function becomes linear, i.e.

$$\mathbf{Y}\left(t
ight)=\gamma\mathbf{A}_{H}\left(t
ight)\mathbf{A}_{K}\left(t
ight)\mathbf{K}\left(t
ight)+\left(1-\gamma
ight)\mathbf{A}_{H}\left(t
ight)\mathbf{A}_{L}\left(t
ight)\mathbf{L}\left(t
ight).$$

■ Finally, as *σ* → 0, the CES production function converges to the Leontief production function with no substitution between factors,

$$Y(t) = A_{H}(t) \min \left\{ \gamma A_{K}(t) K(t); (1 - \gamma) A_{L}(t) L(t) \right\}.$$

• Leontief production function: if $\gamma A_{K}(t) K(t) \neq (1 - \gamma) A_{L}(t) L(t)$, either capital or labor will be partially "idle".

The Solow Model in Continuous Time

A First Look at Sustained Growth I

- Cobb-Douglas already showed that when *α* is close to 1, adjustment to steady-state level can be very slow.
- Simplest model of sustained growth essentially takes *α* = 1 in terms of the Cobb-Douglas production function above.
- Relax Assumptions 1 and 2 and suppose

$$F[K(t), L(t), A(t)] = AK(t), \qquad (36)$$

where A > 0 is a constant.

- So-called "AK" model, and in its simplest form output does not even depend on labor.
- Results we would like to highlight apply with more general constant returns to scale production functions,

$$F[K(t), L(t), A(t)] = AK(t) + BL(t), \qquad (37)$$

A First Look at Sustained Growth Solow Model

Solow Model with Technological Progress

Comparative Dynamics

Conclusions

A First Look at Sustained Growth II

- Assume population grows at *n* as before (cfr. equation (32)).
- Combining with the production function (36),

$$\frac{\dot{k}\left(t\right)}{k\left(t\right)} = \mathbf{s}\mathbf{A} - \delta - \mathbf{n}.$$

- Therefore, if $sA \delta n > 0$, there will be sustained growth in the capital-labor ratio.
- From (36), this implies that there will be sustained growth in output per capita as well.

A First Look at Sustained Growth III

Proposition Consider the Solow growth model with the production function (36) and suppose that $sA - \delta - n > 0$. Then in equilibrium, there is sustained growth of output per capita at the rate $sA - \delta - n$. In particular, starting with a capital-labor ratio k (0) > 0, the economy has

$$k(t) = \exp\left(\left(sA - \delta - n\right)t\right)k(0)$$

and

$$\mathbf{y}(t) = \exp\left(\left(\mathbf{s}\mathbf{A} - \delta - \mathbf{n}\right)t\right)\mathbf{A}\mathbf{k}(0)$$

Note no transitional dynamics.

A First Look at Sustained Growth Solow Model with Technological Progress 00000 Ingrid Ott – Tim Deeken – Endogenous Growth Theory Comparative Dynamics

Conclusions

Sustained Growth in Figure

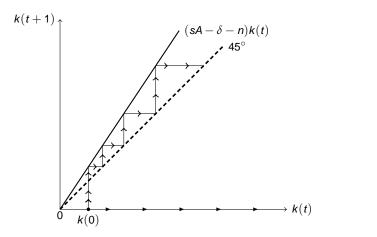


Figure 6.1: Sustained Growth with the linear AK technology with $sA - \delta - n > 0$.

A First Look at Sustained Growth Solow Model

Solow Model with Technological Progress

Comparative Dynamics

Conclusions

A First Look at Sustained Growth IV

Unattractive features:

- Knife-edge case, requires the production function to be ultimately linear in the capital stock.
- Implies that as time goes by the share of national income accruing to capital will increase towards 1.
- Technological progress seems to be a major (perhaps the most major) factor in understanding the process of economic growth.

Conclusions

October 21st, 2010

Balanced Growth I

- Production function F[K(t), L(t), A(t)] is too general.
- May not have balanced growth, i.e. a path of the economy consistent with the Kaldor facts (Kaldor, 1963).
- Kaldor facts:
 - while output per capita increases, the capital-output ratio, the interest rate, and the distribution of income between capital and labor remain roughly constant.

Historical Factor Shares

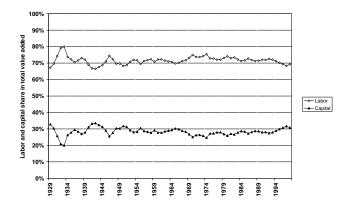


Figure 7.1: Capital and Labor Share in the U.S. GDP.

A First Look at Sustained Growth

Solow Model with Technological Progress

Comparative Dynamics

Conclusions

Ingrid Ott — Tim Deeken – Endogenous Growth Theory

October 21st, 2010

Balanced Growth II

- Note capital share in national income is about 1/3, while the labor share is about 2/3.
- Ignoring land, not a major factor of production.
- But in poor countries land is a major factor of production.
- This pattern often makes economists choose AK^{1/3}L^{2/3}.
- Main advantage from our point of view is that balanced growth is the same as a steady state in transformed variables
 - i.e., we will again have $\dot{k} = 0$, but the definition of k will change.
- But important to bear in mind that growth has many non-balanced features.
 - e.g., the share of different sectors changes systematically.

Conclusions

October 21st, 2010

Types of Neutral Technological Progress I

- For some constant returns to scale function F:
 - Hicks-neutral technological progress:

 $ilde{F}\left[K\left(t
ight),L\left(t
ight),A\left(t
ight)
ight]=A\left(t
ight)F\left[K\left(t
ight),L\left(t
ight)
ight],$

Relabeling of the isoquants (without any change in their shape) of the function *F* [*K*(*t*), *L*(*t*), *A*(*t*)] in the *L*-*K* space.

Solow-neutral technological progress,

 $\tilde{F}[K(t), L(t), A(t)] = F[A(t)K(t), L(t)].$

- Capital-augmenting progress: isoquants shifting with technological progress in a way that they have constant slope at a given labor-output ratio.
- Harrod-neutral technological progress,

$$\tilde{F}[K(t), L(t), A(t)] = F[K(t), A(t)L(t)]$$

 Increases output as if the economy had more labor: slope of the isoquants are constant along rays with constant capital-output ratio.

A First Look at Sustained Growth	Solow Model with Technological Progress	Comparative Dynamics	Conclusions
00000	000000000000000000000000000000000000000	000	
Ingrid Ott — Tim Deeken – Endogenous Growth Theory October 21st, 2010			80/107

Isoquants with Neutral Technological Progress

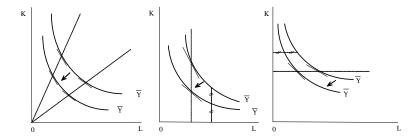


Figure 7.2: Hicks-neutral, Solow-neutral and Harrod-neutral shifts in isoquants.

A First Look at Sustained Growth Solow Model with Technological Progress Comparative Dynamics Conclusions

Types of Neutral Technological Progress II

• Could also have a vector valued index of technology $\mathbf{A}(t) = (A_H(t), A_K(t), A_L(t))$ and a production function

 $\tilde{F}\left[K\left(t\right),L\left(t\right),\mathbf{A}\left(t\right)\right] = A_{H}\left(t\right)F\left[A_{K}\left(t\right)K\left(t\right),A_{L}\left(t\right)L\left(t\right)\right],\quad(38)$

- Nests the constant elasticity of substitution production function introduced in the Example above.
- But even (38) is a restriction on the form of technological progress,
 A(t) could modify the entire production function.
- Balanced growth necessitates that all technological progress be labor augmenting or Harrod-neutral.

Solow Model with Technological Progress

Comparative Dynamics

Conclusions

Uzawa's Theorem I

- Focus on continuous time models.
- Key elements of balanced growth: constancy of factor shares and of the capital-output ratio, K (t) / Y (t).
- By factor shares, we mean

$$\alpha_{L}(t) \equiv \frac{w(t) L(t)}{Y(t)} \text{ and } \alpha_{K}(t) \equiv \frac{R(t) K(t)}{Y(t)}.$$

By Assumption 1 and Euler Theorem $\alpha_{L}(t) + \alpha_{K}(t) = 1$.

Solow Model with Technological Progress

Comparative Dynamics

Conclusions

Ingrid Ott - Tim Deeken - Endogenous Growth Theory

A First Look at Sustained Growth

October 21st, 2010

Uzawa's Theorem II

Theorem

(Uzawa I) Suppose $L(t) = \exp(nt) L(0)$,

$$\mathbf{Y}(t) = \tilde{\mathbf{F}}(\mathbf{K}(t), \mathbf{L}(t), \tilde{\mathbf{A}}(t)),$$

 $\dot{K}(t) = Y(t) - C(t) - \delta K(t)$, and \tilde{F} is CRS in K and L. Suppose for $\tau < \infty$, $\dot{Y}(t) / Y(t) = g_Y > 0$, $\dot{K}(t) / K(t) = g_K > 0$ and $\dot{C}(t) / C(t) = g_C > 0$. Then,

(
$$g_{Y} = g_{K} = g_{C};$$
 and

2 for any $t \geq \tau$, \tilde{F} can be represented as

$$\mathbf{Y}\left(t
ight)=\mathbf{F}\left(\mathbf{K}\left(t
ight),\mathbf{A}\left(t
ight)\mathbf{L}\left(t
ight)
ight)$$
 ,

where $A(t) \in \mathbb{R}_+$, $F : \mathbb{R}^2_+ \to \mathbb{R}_+$ is homogeneous of degree 1, and

$$\dot{A}(t)/A(t) = g = g_{\mathrm{Y}} - n.$$

Proof of Uzawa's Theorem I

By hypothesis,
$$Y(t) = \exp(g_Y(t-\tau)) Y(\tau)$$
,
 $K(t) = \exp(g_K(t-\tau)) K(\tau)$ and $L(t) = \exp(n(t-\tau)) L(\tau)$ for
some $\tau < \infty$.

• Since for $t \geq \tau$, $\dot{K}(t) = g_{K}K(t) = Y(t) - C(t) - \delta K(t)$, we have

$$\left(g_{\mathsf{K}}+\delta\right)\mathsf{K}\left(t
ight)=\mathsf{Y}\left(t
ight)-\mathsf{C}\left(t
ight).$$

Then,

A First Look at Sustained Growth

$$\begin{array}{ll} \left(g_{\mathsf{K}} + \delta \right) \mathsf{K} \left(\tau \right) & = & \exp \left(\left(g_{\mathsf{Y}} - g_{\mathsf{K}} \right) \left(t - \tau \right) \right) \mathsf{Y} \left(\tau \right) \\ & - \exp \left(\left(g_{\mathsf{C}} - g_{\mathsf{K}} \right) \left(t - \tau \right) \right) \mathsf{C} \left(\tau \right) \end{array}$$

for all $t \geq \tau$.

Solow Model with Technological Progress

Comparative Dynamics

Conclusions

Ingrid Ott — Tim Deeken – Endogenous Growth Theory

October 21st, 2010

Proof of Uzawa's Theorem II

Differentiating with respect to time

$$0 = (g_{Y} - g_{K}) \exp((g_{Y} - g_{K})(t - \tau)) Y(\tau) - (g_{C} - g_{K}) \exp((g_{C} - g_{K})(t - \tau)) C(\tau)$$

for all $t \geq \tau$.

• This equation can hold for all $t \ge \tau$

- if g_Y = g_C and Y (τ) = C (τ), which is not possible, since g_K > 0.
 or if g_Y = g_K and C (τ) = 0, which is not possible, since g_C > 0 and C (τ) > 0.
- (a) or if $g_Y = g_K = g_C$, which must thus be the case.

• Therefore, $g_Y = g_K = g_C$ as claimed in the first part of the theorem.

Solow Model with Technological Progress

Proof of Uzawa's Theorem III

• Next, the aggregate production function for time $\tau' \ge \tau$ and any $t \ge \tau$ can be written as

$$\exp\left(-g_{\mathsf{Y}}\left(t-\tau'\right)\right) \mathsf{Y}\left(t\right) \\ = \tilde{\mathsf{F}}\left[\exp\left(-g_{\mathsf{K}}\left(t-\tau'\right)\right) \mathsf{K}\left(t\right), \exp\left(-n\left(t-\tau'\right)\right) \mathsf{L}\left(t\right), \tilde{\mathsf{A}}\left(\tau'\right)\right]$$

• Multiplying both sides by $\exp(g_Y(t - \tau'))$ and using the constant returns to scale property of *F*, we obtain

$$Y(t) = \tilde{F}\left[e^{(t-\tau')(g_{Y}-g_{K})}K(t), e^{(t-\tau')(g_{Y}-n)}L(t), \tilde{A}(\tau')\right].$$

• From part 1, $g_Y = g_K$, therefore

$$\mathsf{Y}\left(t
ight)= ilde{\mathsf{F}}\left[\mathsf{K}\left(t
ight),\exp\left(\left(t- au'
ight)\left(g_{\mathsf{Y}}- extsf{n}
ight)
ight)\mathsf{L}\left(t
ight), ilde{\mathsf{A}}\left(au'
ight)
ight].$$

A First Look at Sustained Growth

Solow Model with Technological Progress

Comparative Dynamics

Conclusions

Ingrid Ott — Tim Deeken - Endogenous Growth Theory

October 21st, 2010

Proof of Uzawa's Theorem IV

• Moreover, this equation is true for $t \ge \tau$ regardless of τ' , thus

$$\begin{array}{rcl} \mathsf{Y} \left(t \right) & = & \mathsf{F} \left[\mathsf{K} \left(t \right), \exp \left(\left(g_{\mathsf{Y}} - n \right) t \right) \mathsf{L} \left(t \right) \right], \\ & = & \mathsf{F} \left[\mathsf{K} \left(t \right), \mathsf{A} \left(t \right) \mathsf{L} \left(t \right) \right], \end{array}$$

with

$$\frac{\dot{A}(t)}{A(t)} = g_{\rm Y} - n$$

establishing the second part of the theorem.

A First Look at Sustained Growth

Solow Model with Technological Progress

Comparative Dynamics

Conclusions

Ingrid Ott - Tim Deeken - Endogenous Growth Theory

October 21st, 2010

Implications of Uzawa's Theorem

Corollary Under the assumptions of Uzawa's Theorem, after time τ technological progress can be represented as Harrod neutral (purely labor augmenting).

- Remarkable feature: stated and proved without any reference to equilibrium behavior or market clearing.
- Also, contrary to Uzawa's original theorem, not stated for a balanced growth path but only for an asymptotic path with constant rates of output, capital and consumption growth.
- But, not as general as it seems;
 - the theorem gives only one representation.

Solow Model with Technological Progress

Conclusions

Stronger Theorem

Theorem

(Uzawa's Theorem II) Suppose that all of the hypotheses in Uzawa's Theorem are satisfied, so that $\tilde{F} : \mathbb{R}^2_+ \times \mathcal{A} \to \mathbb{R}_+$ has a representation of the form F(K(t), A(t) L(t)) with $A(t) \in \mathbb{R}_+$ and $\dot{A}(t) / A(t) = g = g_Y - n$. In addition, suppose that factor markets are competitive and that for all $t \geq T$, the rental rate satisfies $R(t) = R^*$ (or equivalently, $\alpha_K(t) = \alpha_K^*$). Then, denoting the partial derivatives of \tilde{F} and F with respect to their first two arguments by \tilde{F}_K , \tilde{F}_L , F_K and F_L , we have

$$\widetilde{F}_{K}(K(t), L(t), \widetilde{A}(t)) = F_{K}(K(t), A(t)L(t)) \text{ and } (39)$$

$$\widetilde{F}_{L}(K(t), L(t), \widetilde{A}(t)) = A(t)F_{L}(K(t), A(t)L(t)).$$

Moreover, if (39) holds and factor markets are competitive, then $R(t) = R^*$ (and $\alpha_K(t) = \alpha_K^*$) for all $t \ge T$.

Solow Model with Technological Progress

Comparative Dynamics

Conclusions

Ingrid Ott - Tim Deeken - Endogenous Growth Theory

A First Look at Sustained Growth

October 21st, 2010

Intuition

- Suppose the labor-augmenting representation of the aggregate production function applies.
- Then note that with competitive factor markets, as $t > \tau$,

$$\begin{aligned} \alpha_{K}(t) &\equiv \frac{R(t) K(t)}{Y(t)} \\ &= \frac{K(t)}{Y(t)} \frac{\partial F[K(t), A(t) L(t)]}{\partial K(t)} \\ &= \alpha_{K}^{*}, \end{aligned}$$

- Second line uses the definition of the rental rate of capital in a competitive market
- Third line uses that $q_Y = q_K$ and $q_K = q + n$ from Uzawa's Theorem and that F exhibits constant returns to scale so its derivative is homogeneous of degree 0.

Conclusions

Intuition for Uzawa's Theorems

- We assumed the economy features capital accumulation in the sense that g_K > 0.
- From the aggregate resource constraint, this is only possible if output and capital grow at the same rate.
- Either this growth rate is equal to n and there is no technological change (i.e., proposition applies with g = 0), or the economy exhibits growth of per capita income and capital-labor ratio.
- The latter case creates an asymmetry between capital and labor: capital is accumulating faster than labor.
- Constancy of growth requires technological change to make up for this asymmetry
- But this intuition does not provide a reason for why technology should take labor-augmenting (Harrod-neutral) form.
- But if technology did not take this form, an asymptotic path with constant growth rates would not be possible.

Interpretation

Distressing result:

- Balanced growth is only possible under a very stringent assumption.
- Provides no reason why technological change should take this form.
- But when technology is endogenous, intuition above also works to make technology endogenously more labor-augmenting than capital augmenting.
- Note, only requires labor augmenting asymptotically, i.e., along the balanced growth path.
- This is the pattern that certain classes of endogenous-technology models will generate.

Implications for Modeling of Growth

- Does not require Y(t) = F[K(t), A(t) L(t)], but only that it has a representation of the form Y(t) = F[K(t), A(t) L(t)].
- Allows one important exception. If,

$$\mathsf{Y}\left(t
ight)=\left[\mathsf{A}_{\mathsf{K}}\left(t
ight)\mathsf{K}\left(t
ight)
ight]^{lpha}\left[\mathsf{A}_{\mathsf{L}}(t)\mathsf{L}(t)
ight]^{1-lpha}$$
 ,

then both $A_{K}(t)$ and $A_{L}(t)$ could grow asymptotically, while maintaining balanced growth.

Because we can define $A(t) = [A_{\kappa}(t)]^{\alpha/(1-\alpha)} A_{L}(t)$ and the production function can be represented as

$$Y(t) = \left[K(t)\right]^{\alpha} \left[A(t)L(t)\right]^{1-\alpha}.$$

 Differences between labor-augmenting and capital-augmenting (and other forms) of technological progress matter when the elasticity of substitution between capital and labor is not equal to 1.

A First Look at Sustained Growth Solow Model with Technological Progress Comparative Dynamics Conclusions

Further Intuition

- Suppose the production function takes the special form $F[A_{K}(t) K(t), A_{L}(t) L(t)].$
- The stronger theorem implies that factor shares will be constant.
- Given constant returns to scale, this can only be the case when $A_{K}(t) K(t)$ and $A_{L}(t) L(t)$ grow at the same rate.
- The fact that the capital-output ratio is constant in steady state (or the fact that capital accumulates) implies that K (t) must grow at the same rate as A_L (t) L (t).
- Thus balanced growth can only be possible if $A_{K}(t)$ is asymptotically constant.

A First Look at Sustained Growth

The Solow Growth Model with Technological Progress: Continuous Time I

 From Uzawa's Theorem, production function must admit representation of the form

$$\mathbf{Y}\left(t
ight)=\mathbf{F}\left[\mathbf{K}\left(t
ight)$$
 , $\mathbf{A}\left(t
ight)\mathbf{L}\left(t
ight)
ight]$,

Moreover, suppose

$$\frac{\dot{A}(t)}{A(t)} = g, \qquad (40)$$
$$\frac{\dot{L}(t)}{L(t)} = n.$$

Again using the constant saving rate

$$\dot{K}(t) = sF[K(t), A(t)L(t)] - \delta K(t).$$
(41)

A First Look at Sustained Growth

Solow Model with Technological Progress

Comparative Dynamics

Conclusions

Ingrid Ott - Tim Deeken - Endogenous Growth Theory

October 21st, 2010

The Solow Growth Model with Technological Progress: Continuous Time II

• Now define k(t) as the *effective capital-labor* ratio, i.e.,

$$k(t) \equiv \frac{K(t)}{A(t)L(t)}.$$
(42)

- Slight but useful abuse of notation.
- Differentiating this expression with respect to time,

$$\frac{\dot{k}(t)}{k(t)} = \frac{\dot{K}(t)}{K(t)} - g - n.$$
(43)

Output per unit of effective labor can be written as

$$\hat{y}(t) \equiv \frac{Y(t)}{A(t)L(t)} = F\left[\frac{K(t)}{A(t)L(t)}, 1\right]$$

$$\equiv f(k(t)).$$

A First Look at Sustained Growth

Solow Model with Technological Progress

Comparative Dynamics

Conclusions

Ingrid Ott - Tim Deeken - Endogenous Growth Theory

October 21st, 2010

The Solow Growth Model with Technological Progress: Continuous Time III

Income per capita is $y(t) \equiv Y(t) / L(t)$, i.e.,

$$y(t) = A(t) \hat{y}(t)$$
(44)
= A(t) f(k(t)).

- Clearly if ŷ (t) is constant, income per capita, y (t), will grow over time, since A (t) is growing.
- Thus should not look for "steady states" where income per capita is constant, but for *balanced growth paths*, where income per capita grows at a constant rate.
- Some transformed variables such as $\hat{y}(t)$ or k(t) in (43) remain constant.
- Thus balanced growth paths can be thought of as steady states of a transformed model.

Comparative Dynamics

Conclusions

The Solow Growth Model with Technological Progress: Continuous Time IV

- Hence use the terms "steady state" and balanced growth path interchangeably.
- Substituting for $\dot{K}(t)$ from (41) into (43):

$$\frac{\dot{k}(t)}{k(t)} = \frac{\mathsf{sF}\left[\mathsf{K}(t), \mathsf{A}(t) \mathsf{L}(t)\right]}{\mathsf{K}(t)} - \left(\delta + \mathsf{g} + \mathsf{n}\right).$$

Now using (42),

$$\frac{\dot{k}\left(t\right)}{k\left(t\right)} = \frac{\mathrm{sf}\left(k\left(t\right)\right)}{k\left(t\right)} - \left(\delta + g + n\right),\tag{45}$$

• Only difference is the presence of *g*: *k* is no longer the capital-labor ratio but the *effective* capital-labor ratio.

A First Look at Sustained Growth Solow Model with Technological Progress Comparative Dynamics Conclusions

The Solow Growth Model with Technological Progress: Continuous Time V

Proposition Consider the basic Solow growth model in continuous time, with Harrod-neutral technological progress at the rate g and population growth at the rate n. Suppose that Assumptions 1 and 2 hold, and define the effective capital-labor ratio as in (42). Then there exists a unique steady state (balanced growth path) equilibrium where the effective capital-labor ratio is equal to $k^* \in (0, \infty)$ and is given by

$$\frac{f(k^*)}{k^*} = \frac{\delta + g + n}{s}.$$
(46)

Per capita output and consumption grow at the rate *g*.

A First Look at Sustained Growth S

Solow Model with Technological Progress

Comparative Dynamics

Conclusions

Ingrid Ott — Tim Deeken – Endogenous Growth Theory

October 21st, 2010

The Solow Growth Model with Technological Progress: Continuous Time VI

- Equation (46), emphasizes that now total savings, sf (k), are used for replenishing the capital stock for three distinct reasons:
 - **1** depreciation at the rate δ .
 - population growth at the rate *n*, which reduces capital per worker.
 - Harrod-neutral technological progress at the rate g.
- Now replenishment of effective capital-labor ratio requires investments to be equal to $(\delta + g + n) k$.

Solow Model with Technological Progress

Comparative Dynamics

Conclusions

The Solow Growth Model with Technological Progress: Continuous Time VII

Proposition Suppose Assumptions 1 and 2 hold and let A(0) be the initial level of technology. Denote the balanced growth path level of effective capital-labor ratio by $k^*(A(0), s, \delta, n)$ and the level of output per capita by $y^*(A(0), s, \delta, n, t)$. Then

$$\frac{\frac{\partial k^* (A(0), s, \delta, n)}{\partial A(0)}}{\frac{\partial k^* (A(0), s, \delta, n)}{\partial s}} = 0, \frac{\frac{\partial k^* (A(0), s, \delta, n)}{\partial s}}{\frac{\partial s}{\partial \delta}} > 0,$$
$$\frac{\frac{\partial k^* (A(0), s, \delta, n)}{\partial n}}{\frac{\partial n}{\partial \delta}} < 0 \text{ and } \frac{\frac{\partial k^* (A(0), s, \delta, n)}{\partial \delta}}{\frac{\partial \delta}{\partial \delta}} < 0,$$

$$\begin{array}{ll} \displaystyle \frac{\partial y^*\left(A\left(0\right),\,s,\,\delta,\,n,\,t\right)}{\partial A\left(0\right)} &> & 0, \\ \displaystyle \frac{\partial y^*\left(A\left(0\right),\,s,\,\delta,\,n,\,t\right)}{\partial s} > 0, \\ \displaystyle \frac{\partial y^*\left(A\left(0\right),\,s,\,\delta,\,n,\,t\right)}{\partial n} &< & 0 \text{ and } \\ \displaystyle \frac{\partial y^*\left(A\left(0\right),\,s,\,\delta,\,n,\,t\right)}{\partial \delta} < 0, \end{array} \end{array}$$

for each t.

The Solow Growth Model with Technological Progress: Continuous Time VIII

Proposition Suppose that Assumptions 1 and 2 hold, then the Solow growth model with Harrod-neutral technological progress and population growth in continuous time is asymptotically stable, i.e., starting from any k(0) > 0, the effective capital-labor ratio converges to a steady-state value k^* ($k(t) \rightarrow k^*$).

Now model generates growth in output per capita, but entirely exogenously.

A First Look at Sustained Growth 00000 00000

Solow Model with Technological Progress

Comparative Dynamics

Conclusions

Ingrid Ott — Tim Deeken – Endogenous Growth Theory

October 21st, 2010

Comparative Dynamics I

- Comparative dynamics: dynamic response of an economy to a change in its parameters or to shocks.
- Different from comparative statics in Propositions above in that we are interested in the entire path of adjustment of the economy following the shock or changing parameter.
- For brevity we will focus on the continuous time economy.

Recall

$$\dot{k}(t) / k(t) = \mathrm{sf}(k(t)) / k(t) - (\delta + g + n)$$

A First Look at Sustained Growth

Solow Model with Technological Progress

Comparative Dynamics

Conclusions

Ingrid Ott — Tim Deeken – Endogenous Growth Theory

October 21st, 2010

Comparative Dynamics in Figure

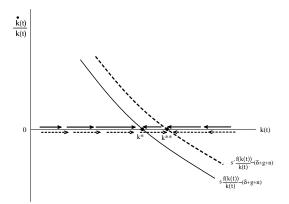


Figure 8.1: Dynamics following an increase in the savings rate from *s* to s'. The solid arrows show the dynamics for the initial steady state, while the dashed arrows show the dynamics for the new steady state.

Comparative Dynamics II

- One-time, unanticipated, permanent increase in the saving rate from s to s'.
 - Shifts curve to the right as shown by the dotted line, with a new intersection with the horizontal axis, k^{**}.
 - Arrows on the horizontal axis show how the effective capital-labor ratio adjusts gradually to k^{**} .
 - Immediately, the capital stock remains unchanged (since it is a state variable).
 - After this point, it follows the dashed arrows on the horizontal axis.
- s changes in unanticipated manner at t = t', but will be reversed back to its original value at some known future date t = t'' > t'.
 - Starting at t', the economy follows the rightwards arrows until t'.
 - After *t*^{''}, the original steady state of the differential equation applies and leftwards arrows become effective.
 - From t'' onwards, economy gradually returns back to its original balanced growth equilibrium, k*.

Conclusions

- Simple and tractable framework, which allows us to discuss capital accumulation and the implications of technological progress.
- Solow model shows us that if there is no technological progress, and as long as we are not in the AK world, there will be no sustained growth.
- Generate per capita output growth, but only exogenously: technological progress is a blackbox.
- Capital accumulation: determined by the saving rate, the depreciation rate and the rate of population growth. All are exogenous.
- Need to dig deeper and understand what lies in these black boxes.

A First Look at Sustained Growth Solow

Solow Model with Technological Progress

Comparative Dynamics

Conclusions

Ingrid Ott — Tim Deeken - Endogenous Growth Theory

October 21st, 2010