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Introduction

Ramsey or Cass-Koopmans model: differs from the Solow model
only because it explicitly models the consumer side and endogenizes
savings.

Beyond its use as a basic growth model, also a workhorse for many
areas of macroeconomics.
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Preferences, Technology, Demographics I

Infinite-horizon, continuous time.

Representative household with instantaneous utility function

u (c (t)) , (1)

Assumption u (c) is strictly increasing, concave, twice continuously
differentiable with derivatives u′ and u′′, and satisfies the
following Inada type assumptions:

lim
c→0

u′ (c) = ∞ and lim
c→∞

u′ (c) = 0.

Suppose representative household represents set of identical
households (normalized to 1).

Each household has an instantaneous utility function given by (1).

L (0) = 1 and
L (t) = exp (nt) . (2)
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Preferences, Technology, Demographics II

All members of the household supply their labor inelastically.
Objective function of each household at t = 0:

U (0) ≡
∫ ∞

0
exp (− (ρ − n) t) u (c (t)) dt , (3)

where
c (t)=consumption per capita at t ,
ρ=subjective discount rate, and effective discount rate is ρ − n.

Objective function (3) embeds:
Household is fully altruistic towards all of its future members, and
makes allocations of consumption (among household members)
cooperatively.
Strict concavity of u (·)

Thus each household member will have an equal consumption

c (t) ≡
C (t)

L (t)
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Preferences, Technology, Demographics III

Utility of u (c (t)) per household member at time t , total of
L (t) u (c (t)) = exp (nt) u (c (t)).

With discount at rate of exp (−ρt), obtain (3).

ASSUMPTION 4′.
ρ > n.

Ensures that in the model without growth, discounted utility is finite.
Will strengthen it in model with growth.

Start model without any technological progress.

Factor and product markets are competitive.

Production possibilities set of the economy is represented by

Y (t) = F [K (t) , L (t)] ,

Standard constant returns to scale and Inada assumptions still hold.
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Preferences, Technology, Demographics IV

Per capita production function f (·)

y (t) ≡
Y (t)

L (t)

= F

[

K (t)

L (t)
, 1

]

≡ f (k (t)) ,

where, as before,

k (t) ≡
K (t)

L (t)
. (4)

Competitive factor markets then imply:

R (t) = FK [K (t), L(t)] = f ′ (k(t)). (5)

and
w (t) = FL[K (t), L(t)] = f (k (t))− k (t) f ′ (k(t)). (6)

Introduction Characterization of Equilibrium Optimal Growth Steady-State Equilibrium Dynamics

Ingrid Ott — Tim Deeken – Endogenous Growth Theory December 10, 2010 6/71



Preferences, Technology, Demographics V

Denote asset holdings of the representative household at time t by
A (t). Then,

Ȧ (t) = r (t)A (t) + w (t) L (t)− c (t) L (t)

r (t) is the risk-free market flow rate of return on assets, and
w (t) L (t) is the flow of labor income earnings of the household.

Defining per capita assets as

a (t) ≡
A (t)

L (t)
,

we obtain:

ȧ (t) = (r (t)− n) a (t) + w (t)− c (t) . (7)

Household assets can consist of capital stock, K (t), which they rent
to firms and government bonds, B (t).
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Preferences, Technology, Demographics VI

With uncertainty, households would have a portfolio choice between
K (t) and riskless bonds.

With incomplete markets, bonds allow households to smooth
idiosyncratic shocks. But for now no need.

Thus, market clearing ⇒

a (t) = k (t) .

No uncertainty depreciation rate of δ implies

r (t) = R (t)− δ. (8)
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The Budget Constraint I

The differential equation

ȧ (t) = (r (t)− n) a (t) + w (t)− c (t)

is a flow constraint

Not sufficient as a proper budget constraint unless we impose a
lower bound on assets.

Three options:

1 Lower bound on assets such as a (t) ≥ 0 for all t
2 Natural debt limit.
3 No-Ponzi Game Condition.

The first two are not always applicable, so the third is most general.
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The Budget Constraint II

Write the single budget constraint of the form:

∫ T

0
c (t) L(t) exp

(

∫ T

t
r (s) ds

)

dt +A (T ) (9)

=
∫ T

0
w (t) L (t) exp

(

∫ T

t
r (s) ds

)

dt +A (0) exp

(

∫ T

0
r (s) ds

)

Differentiating this expression with respect to T and dividing by L(t)
gives (7).

Now imagine that (9) applies to a finite-horizon economy ending at
date T .

Flow budget constraint (7) by itself does not guarantee that
A (T ) ≥ 0.

Thus in finite-horizon we would simply impose (9) as a boundary
condition.
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The Budget Constraint III

Infinite-horizon case: no-Ponzi-game condition,

lim
t→∞

a (t) exp

(

−
∫ t

0
(r (s)− n) ds

)

≥ 0. (10)

Transversality condition ensures individual would never want to have
positive wealth asymptotically, so no-Ponzi-game condition can be
strengthened to (though not necessary in general):

lim
t→∞

a (t) exp

(

−
∫ t

0
(r (s)− n) ds

)

= 0. (11)
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The Budget Constraint IV

To understand no-Ponzi-game condition, multiply both sides of (9) by

exp
(

−
∫ T

0 r (s) ds
)

:

∫ T

0
c (t) L(t) exp

(

−
∫ t

0
r (s) ds

)

dt +A (T ) exp

(

−
∫ T

0
r (s) ds

)

=
∫ T

0
w (t) L (t) exp

(

−
∫ t

0
r (s) ds

)

dt +A (0) .

Divide everything by L (0) and note that L(t) grows at the rate n,
∫ T

0
c (t) exp

(

−
∫ t

0
(r (s)− n) ds

)

dt

+ exp

(

−
∫ T

0
(r (s)− n) ds

)

a (T )

=
∫ T

0
w (t) exp

(

−
∫ t

0
(r (s)− n) ds

)

dt + a (0) .
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The Budget Constraint V

Take the limit as T → ∞ and use the no-Ponzi-game condition (11)
to obtain

∫ ∞

0
c (t) exp

(

−
∫ t

0
(r (s)− n) ds

)

dt

= a (0) +
∫ ∞

0
w (t) exp

(

−
∫ t

0
(r (s)− n) ds

)

dt ,

Thus no-Ponzi-game condition (11) essentially ensures that the
individual’s lifetime budget constraint holds in infinite horizon.
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Definition of Equilibrium

Definition A competitive equilibrium of the Ramsey economy consists
of paths [C (t) ,K (t) ,w (t) ,R (t)]∞t=0, such that the
representative household maximizes its utility given initial
capital stock K (0) and the time path of prices
[w (t) ,R (t)]∞t=0, and all markets clear.

Notice: refers to the entire path of quantities and prices, not just
steady-state equilibrium.

Definition A competitive equilibrium of the Ramsey economy consists
of paths [c (t) , k (t) ,w (t) ,R (t)]∞t=0, such that the
representative household maximizes (3) subject to (7) and
(10) given initial capital-labor ratio k (0), factor prices
[w (t) ,R (t)]∞t=0 as in (5) and (6), and the rate of return on
assets r (t) given by (8).

Introduction Characterization of Equilibrium Optimal Growth Steady-State Equilibrium Dynamics

Ingrid Ott — Tim Deeken – Endogenous Growth Theory December 10, 2010 14/71



Household Maximization I

Maximize (3) subject to (7) and (11).

First ignore (11) and set up the current-value Hamiltonian:

Ĥ (a, c,µ) = u (c (t)) + µ (t) [w (t) + (r (t)− n) a (t)− c (t)] ,

Maximum Principle ⇒ “candidate solution”

Ĥc (a, c,µ) = u′ (c (t))− µ (t) = 0

Ĥa (a, c,µ) = µ (t) (r (t)− n)

= −µ̇ (t) + (ρ − n) µ (t)

lim
t→∞

[exp (− (ρ − n) t) µ (t) a (t)] = 0.

and the transition equation (7).

Notice transversality condition is written in terms of the current-value
costate variable.

Introduction Characterization of Equilibrium Optimal Growth Steady-State Equilibrium Dynamics

Ingrid Ott — Tim Deeken – Endogenous Growth Theory December 10, 2010 15/71



Household Maximization II

For any µ (t) > 0, Ĥ (a, c,µ) is a concave function of (a, c) and
strictly concave in c.

The first necessary condition implies µ (t) > 0 for all t .

Therefore, Sufficient Conditions imply that the candidate solution is
an optimum (is it unique?)

Rearrange the second condition:

µ̇ (t)

µ (t)
= − (r (t)− ρ) , (12)

First necessary condition implies,

u′ (c (t)) = µ (t) . (13)
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Household Maximization III

Differentiate with respect to time and divide by µ (t),

u′′ (c (t)) c (t)

u′ (c (t))

ċ (t)

c (t)
=

µ̇ (t)

µ (t)
.

Substituting into (12), obtain another form of the consumer Euler
equation:

ċ (t)

c (t)
=

1

εu (c(t))
(r (t)− ρ) (14)

where

εu (c (t)) ≡ −
u′′ (c (t)) c (t)

u′ (c (t))
(15)

is the elasticity of the marginal utility u′ (c(t)).

Consumption will grow over time when the discount rate is less than
the rate of return on assets.
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Household Maximization IV

Speed at which consumption will grow is related to the elasticity of
marginal utility of consumption, εu (c (t)).

Even more importantly, εu (c (t)) is the inverse of the intertemporal
elasticity of substitution:

regulates willingness to substitute consumption (or any other attribute
that yields utility) over time.
Elasticity between dates t and s > t is defined as

σu (t, s) = −
d log (c (s) /c (t))

d log (u′ (c (s)) /u′ (c (t)))
.

As s ↓ t ,

σu (t, s) → σu (t) = −
u′ (c (t))

u′′ (c (t)) c (t)
=

1

εu (c (t))
. (16)
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Household Maximization V

Integrating (12),

µ (t) = µ (0) exp

(

−
∫ t

0
(r (s)− ρ) ds

)

= u′ (c (0)) exp

(

−
∫ t

0
(r (s)− ρ) ds

)

,

Substituting into the transversality condition,

0 = lim
t→∞

[

exp (− (ρ − n) t) a (t) u′ (c (0)) exp

(

−
∫ t

0
(r (s)− ρ) ds

)

0 = lim
t→∞

[

a (t) exp

(

−
∫ t

0
(r (s)− n) ds

)]

.

Thus the “strong version” of the no-Ponzi condition, (11) has to hold.
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Household Maximization VI

Since a (t) = k (t), transversality condition is also equivalent to

lim
t→∞

[

exp

(

−
∫ t

0
(r (s)− n) ds

)

k (t)

]

= 0

Notice term exp
(

−
∫ t

0 r (s) ds
)

is a present-value factor: converts a

unit of income at t to a unit of income at 0.

When r (s) = r , factor would be exp (−rt). More generally, define an
average interest rate between dates 0 and t

r̄ (t) =
1

t

∫ t

0
r (s) ds. (17)

Thus conversion factor between dates 0 and t is

exp (−r̄ (t) t) ,
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Household Maximization VII

and the transversality condition is

lim
t→∞

[exp (− (r̄ (t)− n) t) a (t)] = 0. (18)

Recall solution to the differential equation

ẏ (t) = b (t) y (t)

is

y (t) = y (0) exp

(

∫ t

0
b (s) ds

)

,

Integrate (14):

c (t) = c (0) exp

(

∫ t

0

r (s)− ρ

εu (c (s))
ds

)

Once we determine c (0), path of consumption can be exactly solved
out.
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Household Maximization VIII
Special case where εu (c (s)) is constant, εu (c (s)) = θ:

c (t) = c (0) exp

((

r̄ (t)− ρ

θ

)

t

)

,

Lifetime budget constraint simplifies to
∫ ∞

0
c (t) exp (− (r̄ (t)− n) t) dt

= a (0) +
∫ ∞

0
w (t) exp (− (r̄ (t)− n) t) dt ,

Substituting for c (t),

c (0) =
∫ ∞

0
exp

(

−

(

(1 − θ) r̄ (t)

θ
−

ρ

θ
+ n

)

t

)

dt (19)

×

[

a (0) +
∫ ∞

0
w (t) exp (− (r̄ (t)− n) t) dt

]
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Equilibrium Prices

Equilibrium prices given by (5) and (6).

Thus market rate of return for consumers, r (t), is given by (8), i.e.,

r (t) = f ′ (k (t))− δ.

Substituting this into the consumer’s problem, we have

ċ (t)

c (t)
=

1

εu (c (t))

(

f ′ (k (t))− δ − ρ
)

(20)

Equation (19) similarly generalizes for the case of iso-elastic utility
function.
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Optimal Growth I

In an economy that admits a representative household, optimal
growth involves maximization of utility of representative household
subject to technology and feasibility constraints:

max
[k(t),c(t)]∞t=0

∫ ∞

0
exp (− (ρ − n) t) u (c (t)) dt ,

subject to
k̇ (t) = f (k (t))− (n + δ)k (t)− c (t) ,

and k (0) > 0.

Versions of the First and Second Welfare Theorems for economies
with a continuum of commodities: solution to this problem should be
the same as the equilibrium growth problem.

But straightforward to show the equivalence of the two problems.
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Optimal Growth II

Again set up the current-value Hamiltonian:

Ĥ (k , c,µ) = u (c (t)) + µ (t) [f (k (t))− (n + δ)k (t)− c (t)] ,

Candidate solution from the Maximum Principle:

Ĥc (k , c,µ) = 0 = u′ (c (t))− µ (t) ,

Ĥk (k , c,µ) = −µ̇ (t) + (ρ − n) µ (t)

= µ (t)
(

f ′ (k (t))− δ − n
)

,

lim
t→∞

[exp (− (ρ − n) t) µ (t) k (t)] = 0.

Sufficiency Theorem ⇒ unique solution (Ĥ and thus the maximized
Hamiltonian are strictly concave in k).
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Optimal Growth III

Repeating the same steps as before, these imply

ċ (t)

c (t)
=

1

εu (c (t))

(

f ′ (k (t))− δ − ρ
)

,

which is identical to (20), and the transversality condition

lim
t→∞

[

k (t) exp

(

−
∫ t

0

(

f ′ (k (s))− δ − n
)

ds

)]

= 0,

which is, in turn, identical to (11).
Thus the competitive equilibrium is a Pareto optimum and the Pareto
allocation can be decentralized as a competitive equilibrium.

Proposition In the neoclassical growth model described above, with
standard assumptions on the production function
(assumptions 1-4′), the equilibrium is Pareto optimal and
coincides with the optimal growth path maximizing the utility
of the representative household.
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Steady-State Equilibrium I

Steady-state equilibrium is defined as an equilibrium path in which
capital-labor ratio, consumption and output are constant, thus:

ċ (t) = 0.

From (20), as long as f (k∗) > 0, irrespective of the exact utility
function, we must have a capital-labor ratio k∗ such that

f ′ (k∗) = ρ + δ, (21)

Pins down the steady-state capital-labor ratio only as a function of
the production function, the discount rate and the depreciation rate.

Modified golden rule: level of the capital stock that does not
maximize steady-state consumption, because earlier consumption is
preferred to later consumption.
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Figure 4.1: Steady state in the baseline neoclassical growth model
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Steady-State Equilibrium II

Given k∗, steady-state consumption level:

c∗ = f (k∗)− (n + δ)k∗
, (22)

Given Assumption 4′, a steady state where the capital-labor ratio and
thus output are constant necessarily satisfies the transversality
condition.

Proposition In the neoclassical growth model described above, with
Assumptions 1, 2, assumptions on utility above and
Assumption 4′, the steady-state equilibrium capital-labor
ratio, k∗, is uniquely determined by (21) and is independent
of the utility function. The steady-state consumption per
capita, c∗, is given by (22).

Parameterize the production function as follows

f (k) = Af̃ (k) ,
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Steady-State Equilibrium III

Since f (k) satisfies the regularity conditions imposed above, so
does f̃ (k).

Proposition Consider the neoclassical growth model described above,
with Assumptions 1, 2, assumptions on utility above and
Assumption 4′, and suppose that f (k) = Af̃ (k). Denote
the steady-state level of the capital-labor ratio by
k∗ (A, ρ, n, δ) and the steady-state level of consumption per
capita by c∗ (A, ρ, n, δ) when the underlying parameters are
A, ρ, n and δ. Then we have

∂k∗ (·)

∂A
> 0,

∂k∗ (·)

∂ρ
< 0,

∂k∗ (·)

∂n
= 0 and

∂k∗ (·)

∂δ
< 0

∂c∗ (·)

∂A
> 0,

∂c∗ (·)

∂ρ
< 0,

∂c∗ (·)

∂n
< 0 and

∂c∗ (·)

∂δ
< 0.
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Steady-State Equilibrium IV
Instead of the saving rate, it is now the discount factor that affects the
rate of capital accumulation.

Loosely, lower discount rate implies greater patience and thus
greater savings.

Without technological progress, the steady-state saving rate can be
computed as

s∗ =
δk∗

f (k∗)
. (23)

Rate of population growth has no impact on the steady-state
capital-labor ratio, which contrasts with the basic Solow model.

result depends on the way in which intertemporal discounting takes
place.

k∗ and thus c∗ do not depend on the instantaneous utility function
u (·).

form of the utility function only affects the transitional dynamics
not true when there is technological change.



Transitional Dynamics I

Equilibrium is determined by two differential equations:

k̇ (t) = f (k (t))− (n + δ)k (t)− c (t) (24)

and
ċ (t)

c (t)
=

1

εu (c (t))

(

f ′ (k (t))− δ − ρ
)

. (25)

Moreover, we have an initial condition k (0) > 0, also a boundary
condition at infinity,

lim
t→∞

[

k (t) exp

(

−
∫ t

0

(

f ′ (k (s))− δ − n
)

ds

)]

= 0.
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Transitional Dynamics II

Appropriate notion of saddle-path stability:

consumption level (or equivalently µ) is the control variable, and c (0)
(or µ (0)) is free: has to adjust to satisfy transversality condition
since c (0) or µ (0) can jump to any value, need that there exists a
one-dimensional manifold tending to the steady state (stable arm).
If there were more than one path, then the equilibrium would be
indeterminate.

Economic forces are such that indeed there will be a one-dimensional
manifold of stable solutions tending to the unique steady state.

See Figure.
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Figure 5.1: Transitional dynamics in the baseline neoclassical growth model
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Transitional Dynamics: Sufficiency

Why is the stable arm unique?
Three different (complementary) lines of analysis

1 Sufficiency Theorem
2 Global Stability Analysis
3 Local Stability Analysis

Sufficiency Theorem: solution starting in c (0) and limiting to the
steady state satisfies the necessary and sufficient conditions, and
thus unique solution to household problem and unique equilibrium.

Proposition In the neoclassical growth model described above, with
Assumptions 1, 2, assumptions on utility above and
Assumption 4′, there exists a unique equilibrium path
starting from any k (0) > 0 and converging to the unique
steady-state (k∗

, c∗) with k∗ given by (21). Moreover, if
k (0) < k∗, then k (t) ↑ k∗ and c (t) ↑ c∗, whereas if
k (0) > k∗, then k (t) ↓ k∗ and c (t) ↓ c∗ .
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Global Stability Analysis

Alternative argument:

if c (0) started below it, say c′′ (0), consumption would reach zero,
thus capital would accumulate continuously until the maximum level of
capital (reached with zero consumption) k̄ > kgold . This would violate
the transversality condition. Can be established that transversality
condition necessary in this case, thus such paths can be ruled out.
if c (0) started above this stable arm, say at c′ (0), the capital stock
would reach 0 in finite time, while consumption would remain positive.
But this would violate feasibility (a little care is necessary with this
argument, since necessary conditions do not apply at the boundary).
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Local Stability Analysis I

Linearize the set of differential equations, and looking at their
eigenvalues.

Recall the two differential equations:

k̇ (t) = f (k (t))− (n + δ)k (t)− c (t)

and
ċ (t)

c (t)
=

1

εu (c (t))

(

f ′ (k (t))− δ − ρ
)

.

Linearizing these equations around the steady state (k∗
, c∗), we

have (suppressing time dependence)

k̇ = constant+
(

f ′ (k∗)− n − δ
)

(k − k∗)− c

ċ = constant+
c∗f ′′ (k∗)

εu (c∗)
(k − k∗) .
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Local Stability Analysis II

From (21), f ′ (k∗)− δ = ρ, so the eigenvalues of this two-equation
system are given by the values of ξ that solve the following quadratic
form:

det

(

ρ − n − ξ −1
c∗f ′′(k∗)

εu(c∗)
0 − ξ

)

= 0.

Since c∗f ′′ (k∗) /εu (c∗) < 0, there are two real eigenvalues, one
negative and one positive.

Thus local analysis also leads to the same conclusion, but can only
establish local stability.
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Technological Change and the Neoclassical
Model

Extend the production function to:

Y (t) = F [K (t) ,A (t) L (t)] , (26)

where
A (t) = exp (gt)A (0) .

A consequence of Uzawa’s Theorem: (26) imposes purely
labor-augmenting—Harrod-neutral—technological change.

Continue to adopt all usual assumptions, and Assumption 4′ will be
strengthened further in order to ensure finite discounted utility in the
presence of sustained economic growth.
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Technological Change II

Define

ŷ (t) ≡
Y (t)

A (t) L (t)

= F

[

K (t)

A (t) L (t)
, 1

]

≡ f (k (t)) ,

where

k (t) ≡
K (t)

A (t) L (t)
. (27)

Also need to impose a further assumption on preferences in order to
ensure balanced growth.
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Technological Change III

Define balanced growth as a pattern of growth consistent with the
Kaldor facts of constant capital-output ratio and capital share in
national income.

These two observations together also imply that the rental rate of
return on capital, R (t), has to be constant, which, from (8), implies
that r (t) has to be constant.

Again refer to an equilibrium path that satisfies these conditions as a
balanced growth path (BGP).

Balanced growth also requires that consumption and output grow at a
constant rate. Euler equation

ċ (t)

c (t)
=

1

εu (c (t))
(r (t)− ρ) .
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Technological Change IV

If r (t) → r∗, then ċ (t) /c (t) → gc is only possible if
εu (c (t)) → εu , i.e., if the elasticity of marginal utility of consumption
is asymptotically constant.

Thus balanced growth is only consistent with utility functions that
have asymptotically constant elasticity of marginal utility of
consumption.

Proposition Balanced growth in the neoclassical model requires that
asymptotically (as t → ∞) all technological change is purely
labor augmenting and the elasticity of intertemporal
substitution, εu (c (t)), tends to a constant εu .
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Example: CRRA Utility I

Recall the Arrow-Pratt coefficient of relative risk aversion for a
twice-continuously differentiable concave utility function U (c) is

R = −
U ′′ (c) c

U ′ (c)
.

Constant relative risk aversion (CRRA) utility function satisfies the
property that R is constant.

Integrating both sides of the previous equation, setting R to a
constant, implies that the family of CRRA utility functions is given by

U (c) =

{

c1−θ−1
1−θ if θ 6= 1 and θ ≥ 0
ln c if θ = 1

,

with the coefficient of relative risk aversion given by θ.
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Example: CRRA Utility II

With time separable utility functions, the inverse of the elasticity of
intertemporal substitution (defined in equation (16)) and the
coefficient of relative risk aversion are identical.

Thus the family of CRRA utility functions are also those with constant
elasticity of intertemporal substitution.

Link this utility function to the Gorman preferences: consider a
slightly different problem in which an individual has preferences
defined over the consumption of N commodities {c1, ..., cN} given by

U ({c1, ..., cN}) =

{

∑
N
j=1

c1−θ
j

1−θ if θ 6= 1 and θ ≥ 0

∑
N
j=1 ln cj if θ = 1

. (28)
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Example: CRRA Utility III

Suppose this individual faces a price vector p = (p1, ..., pN) and has
income y , so that his budget constraint is

N

∑
j=1

pjcj ≤ y . (29)

Maximizing utility subject to this budget constraint leads to the
indirect utility function

v (p,y) =
y

σ−1
σ

[

∑
N
j=1 p1−σ

j

]1/σ

A monotonic transformation (raise it to the power σ/ (σ − 1)) leads
to Gorman class: CRRA utility functions are within the Gorman class
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Example: CRRA Utility IV

If all individuals have CRRA utility functions, then we can aggregate
their preferences and represent them as if it belonged to a single
individual.

Now consider a dynamic version of these preferences (defined over
infinite horizon):

U =

{

∑
∞
t=0 βt c(t)1−θ−1

1−θ if θ 6= 1 and θ ≥ 0

∑
∞
t=0 βt ln c (t) if θ = 1

.

The important feature here is not that the coefficient of relative risk
aversion constant, but that the intertemporal elasticity of substitution
is constant.
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Technological Change V

Given the restriction that balanced growth is only possible with a
constant elasticity of intertemporal substitution, start with

u (c (t)) =

{

c(t)1−θ−1
1−θ if θ 6= 1 and θ ≥ 0

ln c(t) if θ = 1
,

Elasticity of marginal utility of consumption, εu , is given by θ.

When θ = 0, these represent linear preferences, when θ = 1, we
have log preferences, and as θ → ∞, infinitely risk-averse, and
infinitely unwilling to substitute consumption over time.

Assume that the economy admits a representative household with
CRRA preferences

∫ ∞

0
exp (−(ρ − n)t)

c̃ (t)1−θ − 1

1 − θ
dt , (30)
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Technological Change VI

c̃ (t) ≡ C (t) /L (t) is per capita consumption.

Refer to this model, with labor-augmenting technological change and
CRRA preference as given by (30) as the canonical model

Euler equation takes the simpler form:

·

c̃ (t)

c̃ (t)
=

1

θ
(r (t)− ρ) . (31)

Steady-state equilibrium first: since with technological progress there
will be growth in per capita income, c̃ (t) will grow.
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Technological Change VII

Instead define

c (t) ≡
C (t)

A (t) L (t)

≡
c̃ (t)

A (t)
.

This normalized consumption level will remain constant along the
BGP:

ċ (t)

c (t)
≡

·

c̃ (t)

c̃ (t)
− g

=
1

θ
(r (t)− ρ − θg) .
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Technological Change VIII

For the accumulation of capital stock:

k̇ (t) = f (k (t))− c (t)− (n + g + δ) k (t) ,

where k (t) ≡ K (t) /A (t) L (t).

Transversality condition, in turn, can be expressed as

lim
t→∞

{

k (t) exp

(

−
∫ t

0

[

f ′ (k (s))− g − δ − n
]

ds

)}

= 0. (32)

In addition, equilibrium r (t) is still given by (8), so

r (t) = f ′ (k (t))− δ
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Technological Change IX

Since in steady state c (t) must remain constant:

r (t) = ρ + θg

or
f ′ (k∗) = ρ + δ + θg, (33)

Pins down the steady-state value of the normalized capital ratio k∗

uniquely.

Normalized consumption level is then given by

c∗ = f (k∗)− (n + g + δ) k∗
, (34)

Per capita consumption grows at the rate g.
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Technological Change X

Because there is growth, to make sure that the transversality
condition is in fact satisfied, substitute (33) into (32):

lim
t→∞

{

k (t) exp

(

−
∫ t

0
[ρ − (1 − θ) g − n] ds

)}

= 0,

Can only hold if ρ − (1 − θ) g − n > 0, or alternatively :

ASSUMPTION 4:
ρ − n > (1 − θ) g.

Remarks:

Strengthens Assumption 4′ when θ < 1.
Alternatively, recall in steady state r = ρ + θg and the growth rate of
output is g + n.
Therefore, equivalent to requiring that r > g + n.
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Technological Change XI

Proposition Consider the neoclassical growth model with labor
augmenting technological progress at the rate g and
preferences given by (30). Suppose that Assumptions 1, 2,
assumptions on utility above hold and ρ − n > (1 − θ) g.
Then there exists a unique balanced growth path with a
normalized capital to effective labor ratio of k∗, given by
(33), and output per capita and consumption per capita
grow at the rate g.

Steady-state capital-labor ratio no longer independent of
preferences, depends on θ.

Positive growth in output per capita, and thus in consumption per
capita.
With upward-sloping consumption profile, willingness to substitute
consumption today for consumption tomorrow determines
accumulation and thus equilibrium effective capital-labor ratio.
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Figure 6.1: Transitional dynamics in the neoclassical growth model with
technological change.
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Technological Change XII

Steady-state effective capital-labor ratio, k∗, is determined
endogenously, but steady-state growth rate of the economy is given
exogenously and equal to g.

Proposition Consider the neoclassical growth model with labor
augmenting technological progress at the rate g and
preferences given by (30). Suppose that Assumptions 1, 2,
assumptions on utility above hold and ρ − n > (1 − θ) g.
Then there exists a unique equilibrium path of normalized
capital and consumption, (k (t) , c (t)) converging to the
unique steady-state (k∗

, c∗) with k∗ given by (33).
Moreover, if k (0) < k∗, then k (t) ↑ k∗ and c (t) ↑ c∗,
whereas if k (0) > k∗, then c (t) ↓ k∗ and c (t) ↓ c∗.
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Example: CRRA and Cobb-Douglas

Production function is given by F (K ,AL) = K α (AL)1−α, so that

f (k) = kα
,

Thus r = αkα−1 − δ.

Suppressing time dependence, Euler equation:

ċ

c
=

1

θ

(

αkα−1 − δ − ρ − θg
)

,

Accumulation equation:

k̇

k
= kα−1 − δ − g − n −

c

k
.

Define z ≡ c/k and x ≡ kα−1, which implies that
ẋ/x = (α − 1) k̇/k .
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Example II

Therefore,
ẋ

x
= − (1 − α) (x − δ − g − n − z) (35)

ż

z
=

ċ

c
−

k̇

k
,

Thus

ż

z
=

1

θ
(αx − δ − ρ − θg)− x + δ + g + n + z

=
1

θ
((α − θ)x − (1 − θ)δ + θn)−

ρ

θ
+ z. (36)

Differential equations (35) and (36) together with the initial condition
x (0) and the transversality condition completely determine the
dynamics of the system.
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Comparative Dynamics I

Comparative statics: changes in steady state in response to changes
in parameters.

Comparative dynamics look at how the entire equilibrium path of
variables changes in response to a change in policy or parameters.

Look at the effect of a change in tax on capital (or discount rate ρ)

Consider the neoclassical growth model in steady state (k∗
, c∗).

Tax declines to τ′
< τ.

From Propositions above, after the change there exists a unique
steady-state equilibrium that is saddle path stable.

Let this steady state be denoted by (k∗∗
, c∗∗).

Since τ′
< τ, k∗∗

> k∗ while the equilibrium growth rate will remain
unchanged.
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Comparative Dynamics II

Figure: drawn assuming change is unanticipated and occurs at some
date T .

At T , curve corresponding to ċ/c = 0 shifts to the right and laws of
motion represented by the phase diagram change.

Following the decline c∗ is above the stable arm of the new
dynamical system: consumption must drop immediately

Then consumption slowly increases along the stable arm

Overall level of normalized consumption will necessarily increase,
since the intersection between the curve for ċ/c = 0 and for
k̇/k = 0 will necessarily be to the left side of kgold .
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Figure 6.2: The dynamic response of capital and consumption to a decline in
capital taxation from τ to τ′

< τ.
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The Role of Policy I

Growth of per capita consumption and output per worker (per capita)
are determined exogenously.
But level of income, depends on 1/θ, ρ, δ, n, and naturally the form
of f (·).
Proximate causes of differences in income per capita: here explain
those differences only in terms of preference and technology
parameters.
Link between proximate and potential fundamental causes:

e.g. intertemporal elasticity of substitution and the discount rate can
be related to cultural or geographic factors.

But an explanation for cross-country and over-time differences in
economic growth based on differences or changes in preferences is
unlikely to be satisfactory.
More appealing: link incentives to accumulate physical capital (and
human capital and technology) to the institutional environment.
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The Role of Policy II

Simple way: through differences in policies.

Introduce linear tax policy: returns on capital net of depreciation are
taxed at the rate τ and the proceeds of this are redistributed back to
the consumers.

Capital accumulation equation remains as above:

k̇ (t) = f (k (t))− c (t)− (n + g + δ) k (t) ,

But interest rate faced by households changes to:

r (t) = (1 − τ)
(

f ′ (k (t))− δ
)

,
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The Role of Policy III

Growth rate of normalized consumption is then obtained from the
consumer Euler equation, (31):

ċ (t)

c (t)
=

1

θ
(r (t)− ρ − θg) .

=
1

θ

(

(1 − τ)
(

f ′ (k (t))− δ
)

− ρ − θg
)

.

Identical argument to that before implies

f ′ (k∗) = δ +
ρ + θg

1 − τ
. (37)

Higher τ, since f ′ (·) is decreasing, reduces k∗.
Higher taxes on capital have the effect of depressing capital
accumulation and reducing income per capita.
But have not so far offered a reason why some countries may tax
capital at a higher rate than others.
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A Quantitative Evaluation I
Consider a world consisting of a collection of J closed neoclassical
economies (with the caveats of ignoring technological, trade and
financial linkages across countries
Each country j ∈ J admits a representative household with identical
preferences,

∫ ∞

0
exp (−ρt)

C1−θ
j − 1

1 − θ
dt . (38)

There is no population growth, so cj is both total or per capita
consumption.
Equation (38) imposes that all countries have the same discount rate
ρ.
All countries also have access to the same production technology
given by the Cobb-Douglas production function

Yj = K 1−α
j (AHj)

α
, (39)

Hj is the exogenously given stock of effective labor (human capital).
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A Quantitative Evaluation II

The accumulation equation is

K̇j = Ij − δKj .

The only difference across countries is in the budget constraint for
the representative household,

(1 + τj) Ij + Cj ≤ Yj , (40)

τj is the tax on investment: varies across countries because of
policies or differences in institutions/property rights enforcement.

1 + τj is also the relative price of investment goods (relative to
consumption goods): one unit of consumption goods can only be
transformed into 1/ (1 + τj) units of investment goods.

The right-hand side variable of (40) is still Yj : assumes that τj Ij is
wasted, rather than simply redistributed to some other agents.
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A Quantitative Evaluation III

Without major consequence since CRRA preferences (38) can be
exactly aggregated across individuals.

Competitive equilibrium: solution to maximization of (38) subject to
(40) and the capital accumulation equation.

Euler equation of the representative household

Ċj

Cj
=

1

θ

(

(1 − α)

(1 + τj)

(

AHj

Kj

)α

− δ − ρ

)

.

Steady state: because A is assumed to be constant, the steady state
corresponds to Ċj /Cj = 0. Thus,

Kj =
(1 − α)1/α AHj

[(1 + τj) (ρ + δ)]1/α
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A Quantitative Evaluation IV

Thus countries with higher taxes on investment will have a lower
capital stock, lower capital per worker, and lower capital-output ratio
(using (39) the capital-output ratio is simply K /Y = (K /AH)α) in
steady state.
Substituting into (39), and comparing two countries with different
taxes (but the same human capital):

Y (τ)

Y (τ′)
=

(

1 + τ′

1 + τ

)
1−α

α

(41)

So countries that tax investment at a higher rate will be poorer.
Advantage relative to Solow growth model: extent to which different
types of distortions will affect income and capital accumulation is
determined endogenously.
A plausible value for α is 2/3, since this is the share of labor income
in national product.
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A Quantitative Evaluation V

For differences in τ’s across countries there is no obvious answer:

popular approach: obtain estimates of τ from the relative price of
investment goods (as compared to consumption goods)
data from the Penn World tables suggest there is a large amount of
variation in the relative price of investment goods.

E.g., countries with the highest relative price of investment goods
have relative prices almost eight times as high as countries with the
lowest relative price.

Using α = 2/3, equation (41) implies:

Y (τ)

Y (τ′)
≈ 81/2 ≈ 3.

Thus, even very large differences in taxes or distortions are unlikely
to account for the large differences in income per capita that we
observe.
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A Quantitative Evaluation VI

Parallels discussion of the Mankiw-Romer-Weil approach:

differences in income per capita unlikely to be accounted for by
differences in capital per worker alone.
need sizable differences in the efficiency with which these factors are
used, absent in this model.

But many economists have tried (and still try) to use versions of the
neoclassical model to go further.

Motivation is simple: if instead of using α = 2/3, we take α = 1/3

Y (τ)

Y (τ′)
≈ 82 ≈ 64.

Thus if there is a way of increasing the responsiveness of capital or
other factors to distortions, predicted differences across countries
can be made much larger.
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A Quantitative Evaluation VII

To have a model in which α = 1/3, must have additional
accumulated factors, while still keeping the share of labor income in
national product roughly around 2/3.

E.g., include human capital, but human capital differences appear to
be insufficient to explain much of the income per capita differences
across countries.

Or introduce other types of capital or perhaps technology that
responds to distortions in the same way as capital.
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Conclusions

Major contribution: open the black box of capital accumulation by
specifying the preferences of consumers.

Also by specifying individual preferences we can explicitly compare
equilibrium and optimal growth.

Paves the way for further analysis of capital accumulation, human
capital and endogenous technological progress.

Did our study of the neoclassical growth model generate new insights
about the sources of cross-country income differences and economic
growth relative to the Solow growth model? Largely no.

This model, by itself, does not enable us to answer questions about
the fundamental causes of economic growth.

But it clarifies the nature of the economic decisions so that we are in
a better position to ask such questions.
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